在训练中,使用nvidia-smi观察gpu使用情况,发现,显存占用过多。但gpu利用率一直为0.

解决方法:

​ 在不适用cond虚拟环境的情况下,重新安装tensorflow-gpu和keras。

​ 卸载之前的版本:

​ conda uninstall tensorflow-gpu

​ conda uninstall keras

​ 安装新的版本:

​ 先执行: conda install tensorflow-gpu

​ 后执行: pip install keras

后一个语句使用pip的目的在于,conda会安装多余的依赖。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值