什么是IP地址?
如果有人问你什么是IP地址?你会怎么回答呢?
ip地址:一台电脑在网络中的唯一标识,
比如192.168.1.1:用来在本地局域网上中标记一台电脑。
ip地址的分类
每一个IP地址包括两部分:网络地址(网络号)和主机地址(主机号)
A类IP地址
一个A类IP地址由1字节的网络地址和3字节主机地址组成,网络地址的最高位必须是“0”,
地址范围1.0.0.1-126.255.255.254
二进制表示为:00000001 00000000 00000000 00000001 - 01111110 11111111 11111111 11111110
可用的A类网络有126个,每个网络能容纳1677214个主机
B类IP地址
一个B类IP地址由2个字节的网络地址和2个字节的主机地址组成,网络地址的最高位必须是“10”,
地址范围128.1.0.1-191.255.255.254
二进制表示为:10000000 00000001 00000000 00000001 - 10111111 11111111 11111111 11111110
可用的B类网络有16384个,每个网络能容纳65534主机
C类IP地址
一个C类IP地址由3字节的网络地址和1字节的主机地址组成,网络地址的最高位必须是“110”
范围192.0.1.1-223.255.255.254
二进制表示为: 11000000 00000000 00000001 00000001 - 11011111 11111111 11111110 11111110
C类网络可达2097152个,每个网络能容纳254个主机
D类地址用于多点广播
D类IP地址第一个字节以“1110”开始,它是一个专门保留的地址。
它并不指向特定的网络,目前这一类地址被用在多点广播(Multicast)中
多点广播地址用来一次寻址一组计算机 s 地址范围224.0.0.1-239.255.255.254
E类IP地址
以“1111”开始,为将来使用保留
E类地址保留,仅作实验和开发用
私有ip
在这么多网络IP中,国际规定有一部分IP地址是用于我们的局域网使用,也就
是属于私网IP,不在公网中使用的,它们的范围是:
10.0.0.0~10.255.255.255
172.16.0.0~172.31.255.255
192.168.0.0~192.168.255.255
注意
IP地址127.0.0.1~127.255.255.255用于回路测试,
如:127.0.0.1可以代表本机IP地址,用http://127.0.0.1就可以测试本机中配置的Web服务器。
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。1
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎