回溯法-----7-1 0-1背包 (40 分) -----(不剪枝情况下)

一,题目:7-1 0-1背包 (40 分)

给定n(n<=100)种物品和一个背包。物品i的重量是wi,价值为vi,背包的容量为C(C<=1000)。问:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两个选择:装入或不装入。不能将物品i装入多次,也不能只装入部分物品i。

输入格式:
共有n+1行输入: 第一行为n值和c值,表示n件物品和背包容量c; 接下来的n行,每行有两个数据,分别表示第i(1≤i≤n)件物品的重量和价值。

输出格式:
输出装入背包中物品的最大总价值。

输入样例:

5 10

2 6

2 3

6 5

5 4

4 6

输出样例:

15

二、代码

#include<iostream>
using namespace std;

int n,c;
int cv=0; // 当前价值 
int cw=0;  // 当前可用重量 
int x[100]; // 选物品情况 
int w[100],v[100];  //各个物品重量价值 
int maxV=0; // 记录最大的价值 

//限界函数,可以减少递归次数
int bound(int t){
	int sum;
	for(int i=t;i<n+1;i++)
		sum+=v[i];
	return sum;
} 

//回溯函数 
void Backtrack(int t){ // t为深度,从 1 开始 

	if(t>n){ // 达到叶子结点,即判断完所有物品选择情况,退出递归 
		if(cv>maxV) // 判断当前价值是否最大 
			maxV=cv;
		return;
	}
	
	if(w[t]<=cw){
		//选当前物品,左子树 
		x[t]=1; // 选择置1 
		cw-=w[t]; // 重量减去选的物品重量 
		cv+=v[t]; // 价值加上选的物品价值 
		
		Backtrack(t+1); // 继续往左子树下走 
		cw+=w[t]; // 回溯,重量一一加回来 
		cv-=v[t];// 回溯,价值一一减回去 
	}
	
	//限界函数 
	if(bound(t+1)>maxV){
		x[t]=0;
		Backtrack(t+1);
	}
}
int main(){
	
	cin>>n>>c;
	cw=c;
	for(int i=1;i<=n;i++){ //从1位置开始输入,0位置不记录 
		cin>>w[i]>>v[i];
	}
	
	Backtrack(1);
	
	cout<<maxV<<endl;
	return 0;
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值