Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.
Output
For each set of input print the length of longest wavio sequence in a line.
我自己写的代码:思路和大多数人一样,从两边找到到每一个位置的最长递增序列O(n^2),最后进行一遍扫描O(n),这样用时太长了。
int dp(const int n)
{
int i, k;
inc[0] = 1;
for(i = 1; i < n; i++)
{
inc[i] = 1;
for(k = 0; k < i; k++)
{
if(s[i] > s[k])
{
inc[i] = max(inc[i], 1 + inc[k]);
}
}
}
dec[n-1] = 1;
for(i = n - 2; i >= 0; i--)
{
dec[i] = 1;
for(k = n - 1; k > i; k--)
{
if(s[i] > s[k])
{
dec[i] = max(dec[i], 1 + dec[k]);
}
}
}
int best = 1;
for(i = 1; i < n; i++)
{
best = max(best, min(dec[i], inc[i]));
}
return 2 * best - 1;
}
网上找到的答案:
int stack[10000]; //the elem at this stack is some index
int top;
int b_search(int v) //[x, y)
{
int x = 0, y = top;
while(x < y)
{
int m = (x+y) / 2;
if(s[stack[m]] >= v) y = m;
else x = m + 1;
}
return x;
}
int dp(int n)
{
top = stack[0] = 0;
inc[0] = 1;
for(int i = 1; i < n; i++)
{
if(s[i] > s[stack[top]])
{
inc[i] = inc[stack[top]] + 1;
stack[++top] = i;
}
else
{
int m = b_search(s[i]);
inc[i] = inc[stack[m]];
stack[m] = i;
}
}
dec[n-1] = 1;
stack[top = 0] = n - 1;
for(int k = n - 2; k >= 0; k--)
{
if(s[k] > s[stack[top]])
{
dec[k] = dec[stack[top]] + 1;
stack[++top] = k;
}
else
{
int m = b_search(s[k]);
dec[k] = dec[stack[m]];
stack[m] = k;
}
}
int best = 1;
for(int t = 1; t < n; t++)
{
best = max(best, min(inc[t], dec[t]));
}
return 2 * best - 1;
}
这里用了一个不一般的“栈”,栈中存放的是合适的数列下标。
在扫描查找到 i 位置的最长递增序列时分情况进行处理:
if(s[i] > s[stack[top]]) d[i] = d[stack[top]] + 1;
else 由于在栈中依次保存的下标对应的数列元素是递增的,现在用二分查找找到这样一个栈下标u,使得s[stack[u]]恰好不小于s[i],再用 i 替换stack[u],并且inc[i] = inc[stack[u]],可以用数学归纳法证明这样的替换以后可以使得以后得到尽可能长的递增序列,并且当前 i 位置的最长递增子序列长度也是正确的,这里的时间复杂度是O(nlgn)。
评价:
①在有序的情况下应该想到二分查找,并且本来就要一个O(nlgn)的算法;
②不要思维太固定了,虽然后来自己想到了一个不那么完美的方案,但一开始总是受到最长公共子序列的影响。