首先,当前大数据领域的开发岗位确实比较多,近两年有不少大数据方向的研究生也会从事大数据开发岗位,而Java语言则是大数据开发人员的常用工具,所以如果要从事大数据开发岗位,可以重点学习一下Java语言。
大数据开发有两大类岗位,不同岗位对于Java编程能力的要求也并不相同,大数据平台开发岗位的要求相对高一些,而大数据应用(行业场景)开发岗位对于Java编程的要求并不高。对于初学者来说,应该结合自身的发展规划来制定Java的学习计划。
如果要从事大数据应用开发岗位,可以按照Java Web开发的路线来制定学习规划,整体的学习内容可以分为以下三大部分:
第一:Java面向对象开发基础。Java的面向对象开发基础可以分为两大部分,其一是Java的语法基础,包括封装、继承、多态、多线程等内容,在学习的过程中要充分理解Java的编程过程,能够形成初步的Java编程思想,其二是Java的模式编程,掌握一些经典的编程模式能够促进初学者快速成长,代码的可用性也会明显提升。
第二:JavaWeb开发基础。学习Java Web开发主要是提升开发人员的技术落地能力,很多大数据开发任务最终都需要Web形式来进行呈现,所以一定要重视Java Web开发相关知识的学习。当前Spring系列框架在Web开发领域有广泛的应用,可以从SpringBoot开始学习。
第三:大数据平台接口。学习大数据开发一定离不开大数据平台的支持,所以要在学习的过程中,逐步了解大数据平台所提供的编程接口,以便于完成一些基于大数据平台的开发实验。
Java程序员转大数据职位的学习路线图:
第一步:分布式计算框架
掌握 hadoop和spark分布式计算框架,了解文件系统、消息队列和Nosql数据库,学习相关组件如hadoop、MR、spark、hive、hbase、redies、kafka等;
第二步:算法和工具
学习了解各种数据挖掘算法,如分类、聚类、关联规则、回归、决策树、神经网络等,熟练掌握一门数据挖掘编程工具:Python或者Scala。目前主流平台和框架已经提供了算法库,如hadoop上的Mahout和spark上的Mllib,你也可以从学习这些接口和脚本语言开始学习这些算法。
第三步:数学
补充数学知识:高数、概率论和线代
第四步:项目实践
1、开源项目:tensorflow:Google的开源库,已经有40000多个star,非常惊人,支持移动设备;
2、参加数据竞赛:Kaggle和国内天池数据竞赛
3、通过企业实习获取项目经验
如果你仅仅是做大数据开发和运维,则可以跳过第二步和第三步,如果你是侧重于应用已有算法进行数据挖掘,那么第三步也可以先跳过。
总结:
Java工程师可以更容易理解hadoop的框架和生态,很多大数据saas级产品也是Java开发的,因此Java基础是转行大数据的一个很好的起点。但大数据是一个更为宽广的领域,具有跨界知识和能力的人才会更受企业青睐。随着人工智能时代的到来,大数据将迎来黄金发展的10年,如果你已经做好准备,那么就立即开始行动吧!