更多目标检测和图像分类识别项目可看我主页其他文章
功能演示:
基于Faster-RCNN的交通标志检测系统,支持图像检测和视频检测(pytorch框架)_哔哩哔哩_bilibili
(一)简介
基于Faster-RCNN的交通标志检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面等。ui界面由pyqt5设计实现。
该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客
pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili
(二)项目介绍
1. 项目结构
对应的目录结构如下:
该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:
第一步:模型训练,即运行train_res50_fpn.py文件
第二步:模型验证,当模型训练完后,运行validation.py文件
第三步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果
2. 数据集
部分数据展示:
3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面
b.图像检测界面
c.视频检测界面
4.模型训练和验证的一些指标及效果
(三)总结
以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。
若项目使用过程中出现问题,请及时交流!