2190. 有源汇上下界最小流(最大流,上下界可行流)

活动 - AcWing

给定一个包含 n 个点 m 条边的有向图,每条边都有一个流量下界和流量上界。

给定源点 S 和汇点 T,求源点到汇点的最小流。

注意,为了方便,本题做出如下约定:

  • 可行流流量 = 从源点流出的流量 - 流入源点的流量,可以为负值。
  • 例如,当 S→T 的流量为 0,T→S 的流量为 10 时,S→T 的流量为 −10。
输入格式

第一行包含四个整数 n,m,S,T。

接下来 m 行,每行包含四个整数 a,b,c,d 表示点 a 和 b 之间存在一条有向边,该边的流量下界为 c,流量上界为 d。

点编号从 1 到 n。

输出格式

输出一个整数表示最小流。

如果无解,则输出 No Solution

数据范围

1≤n≤50003
1≤m≤125003
1≤a,b≤n
0≤c≤d≤2147483647
数据保证答案不超过 int 范围。

输入样例:
7 12 6 7
6 1 0 2147483647
1 7 0 2147483647
6 2 0 2147483647
2 7 0 2147483647
6 3 0 2147483647
3 7 0 2147483647
6 4 0 2147483647
4 7 0 2147483647
6 5 0 2147483647
5 7 0 2147483647
5 1 1 2147483647
3 4 1 2147483647
输出样例:
2

解析: 

本体做法参考这两道题的做法:2189. 有源汇上下界最大流(最大流上,下界可行流,模板题)-CSDN博客

2188. 无源汇上下界可行流 (最大流,上下界可行流,模板题)-CSDN博客 

根据《2189. 有源汇上下界最大流》的证明过程可以知道:

|f0+f'|=|f(s->t)|,其中 f0 为新图的源点 S 到汇点 T 的满流,f' 为在求过最大流后的新图的残留网络上 s 到 t 的最大流,f(s->t) 为原图的最大流。有前两题的证明可以知道 f0 为原图的可行流,而我们要想 f(s->t) 成为原图的最大流,就需要 f' 尽可能的大,大到不能再打为止。

那么 f' 要怎么求呢?

可以直接在求过最大流后的新图的残留网络上求 s 到 t 的最大流。

证明:应为是在求过最大流后的新图的残留网络上,有前面的题目证明知道,此时 f0 为新图的源点 S 到汇点 T 的满流。所以 S 到任何点的正向边都为 0 ,此时直接在残留网络上求 s 到 t 的最大流时不会有流量经过 S,应为 S 的出边容量都为 0;同理,T 也成立。所以此时可以直接在残留网络上求出 s 到 t 的最大流。

 对于本题要求求出最小流,只需要求出 s 到 t 的最小流带入即可。

最小流求法:

出 t 到 s 的最大流取反即可。

 

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 5e4 + 10, M = (125003 + N) * 2, INF = 2147483647;
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N], A[N];

void add(int a, int b, int c) {
	e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;
	e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}

bool bfs() {
	int hh = 0, tt = 0;
	memset(d, -1, sizeof d);
	q[0] = S, d[S] = 0, cur[S] = h[S];
	while (hh <= tt) {
		int t = q[hh++];
		for (int i = h[t]; i != -1; i = ne[i]) {
			int j = e[i];
			if (d[j] == -1 && f[i]) {
				cur[j] = h[j];
				d[j] = d[t] + 1;
				if (j == T)return 1;
				q[++tt] = j;
			}
		}
	}
	return 0;
}

int find(int u, int limit) {
	if (u == T)return limit;
	int flow = 0;
	for (int i = cur[u]; i != -1&&flow<limit; i = ne[i]) {
		int j = e[i];
		cur[u] = i;
		if (d[j] == d[u] + 1 && f[i]) {
			int t = find(j, min(f[i], limit - flow));
			if (!t)d[j] = -1;
			f[i] -= t, f[i ^ 1] += t, flow += t;
		}
	}
	return flow;
}

int dinic() {
	int ret = 0, flow;
	while (bfs())while (flow = find(S, INF))ret += flow;
	return ret;
}

int main() {
	int s, t;
	cin >> n >> m >> s >> t;
	memset(h, -1, sizeof h);
	S = 0, T = n + 1;
	for (int i = 1,a,b,c,d; i <= m; i++) {
		scanf("%d%d%d%d", &a, &b, &c, &d);
		add(a, b, d - c);
		A[a] -= c, A[b] += c;
	}
	int tot = 0;
	for (int i = 1; i <= n; i++) {
		if (A[i] > 0)add(S, i, A[i]),tot+=A[i];
		else if (A[i] < 0)add(i, T, -A[i]);
	}
	add(t, s, INF);
	if (dinic() < tot)cout << "No Solution" << endl;
	else {
		int ret = f[idx - 1];
		f[idx - 1] = 0, f[idx - 2] = 0;
		S = t, T = s;
		printf("%d\n", ret - dinic());
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值