地铁大数据挖掘之数据预处理——从原始一卡通数据提取城市地铁客流(二)

该博客介绍了如何从原始一卡通数据中进一步提取城市地铁客流,通过数据预处理将线路、客流信息转化为二维表格,便于分析。首先,针对线路问题进行处理,尤其是换乘站的特殊情况。然后,对进站和出站数据进行透视转换,最后整合代码,生成易于理解的结果表格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    关于初步处理,请参考地铁大数据挖掘之客流数据预处理——从原始一卡通数据提取城市地铁客流(一)。


 

    上一篇博客对数据进行了初步处理,得到结果如下图:

    ”_10min“字段代表所处的时间片(比如1代表0:00-0:10),inputnums代表进站客流,outputnums代表出站客流。

    然而,这一结果在使用时存在两个问题:

  1. 我们在计算地铁站时,大部分是只看站点不看线路的。即使是换乘站点,也是几条线路都在一个站点。因此,在"linename"这里存在问题。
  2. 这样的结果看起来不是很方便。如果我们可以分别用两张二维表格表示进站和出站,两个维度分别是站点和时间片,那最后的结果将会好看很多。

    因此,这一篇,我们对上一篇的结果进行进一步优化。

1 提取线路

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值