machine learning
文章平均质量分 83
翻滚的老鼠屎
零基础学习python,跌跌撞撞龟速前行。后来因为实验室的需要浅尝辄止地接触过C#、R、MATLAB等语言,兜兜转转陡然发现:人生苦短,我爱python!
写这个博客,给所有像我一样在敲代码的世界里道阻且艰然而不抛弃不放弃的朋友们,纵使是“老鼠屎”也不甘一直是“老鼠屎”,愿我们可以相互鼓励,共同进步,在敲代码的世界里走出自己的路!当有一日进阶大神也不忘初心:曾经,我是一颗翻滚的老鼠屎!
展开
-
机器学习机试题及解析(一)
1.随机数列要多长才能使数字7出现的概率至少为9/10?答案:22.解析:初步分析,出现7的概率,包括1次 或者 2次 或者 3次 .,所以无法直接一步计算,我们利用对立事件转换,计算不出现7的概率来分析,有随机数每一位出现数字7的概率为0.1,不出现数字7的概率为0.9 设随机数要x位才能使数字7出现的概率 至少0.91-0.9^x≥0.90.9^x≤0.1xlg0.9≤-...原创 2018-09-27 20:17:21 · 3394 阅读 · 0 评论 -
决策树原理及实战代码
目录1 定义2 基本流程3 划分选择 3.1 信息增益(ID3)3.2 增益率(C4.5)3.3 基尼系数(CART)4 剪枝处理4.1 预剪枝4.2 后剪枝5 多变量决策树6 决策树优缺点6.1 优点6.2 缺点7 代码实践1 定义 决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率...原创 2018-10-06 22:05:09 · 1411 阅读 · 0 评论 -
GBDT(MART) 迭代决策树入门教程 | 简介
声明:这篇博客转自https://www.cnblogs.com/peizhe123/p/5086128.html和https://blog.csdn.net/w28971023/article/details/8240756。最近在看集成学习相关知识,小白对于公式较难理解,这里转载一下这篇博文,感觉比较好理解,希望可以帮助到需要的朋友们。 GBDT(Gradient Boos...转载 2018-10-09 21:11:18 · 334 阅读 · 0 评论 -
Keras实战:基于LSTM的股价预测方法
Hi,这里是一只殚精竭虑的老鼠屎。最近在处理公交数据,模型效果非常不理想。过程中学习了师兄留下的lstm做的金融数据预测,使用的是keras框架,这里整理一下。这篇博客里面交代了包括数据的处理、模型搭建、模型调参、模型评估等重要环节,十分适合新手入门。师兄留下的jupyter notebook出处不详。目录1 准备工作1.1 引入相关库1.2 引入参数2 构建模型...原创 2018-11-17 10:32:59 · 23060 阅读 · 38 评论 -
修正的线性激活函数(Relu)如何避免梯度消失
2019年的第一篇博客。主要译自Machine Learning Mastery,加上了一点点自己的想法。如有问题,欢迎批评指正~ 消失梯度问题是在训练深度神经网络时可能遇到的不稳定问题之一。它描述了深度多层前馈网络或循环神经网络无法将有用的梯度信息从模型的输出端传播回模型输入端附近的层的情况。其结果是,具有许多层的模型通常无法在给定的数据集上学习或过早地收敛到较差的解决方案。...原创 2019-01-15 16:27:12 · 6558 阅读 · 0 评论 -
如何理解Keras中的TimeDistributed层并在LSTM中使用
老规矩,主要框架译自How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python~,中间加了一点点自己的理解。 长短时记忆网络(LSTMs)是一种流行且功能强大的循环神经网络(RNN)。它们很难配置和应用于任意序列预测问题,即使使用定义良好且“易于使用”的接口(如Python中...原创 2019-03-21 17:00:06 · 21861 阅读 · 13 评论