深度学习入门
文章平均质量分 96
通过一个个简单的demo入门深度学习。
翻滚的老鼠屎
零基础学习python,跌跌撞撞龟速前行。后来因为实验室的需要浅尝辄止地接触过C#、R、MATLAB等语言,兜兜转转陡然发现:人生苦短,我爱python!
写这个博客,给所有像我一样在敲代码的世界里道阻且艰然而不抛弃不放弃的朋友们,纵使是“老鼠屎”也不甘一直是“老鼠屎”,愿我们可以相互鼓励,共同进步,在敲代码的世界里走出自己的路!当有一日进阶大神也不忘初心:曾经,我是一颗翻滚的老鼠屎!
展开
-
图注意力模型GAT代码分析(Keras版)
本文分享一个对Keras版GAT源码的分析。GAT原文:https://arxiv.org/abs/1710.10903,建议参考着知乎superbrother大神的文章进行理解。TensorFlow版可以看:https://github.com/PetarV-/GAT源代码 github:https://github.com/danielegrattarola/keras-gat1 u...原创 2019-10-28 21:35:41 · 7696 阅读 · 13 评论 -
如何建立Multi-Step(多步预测)的LSTM时间序列模型(以对家庭用电预测为例)
译自How to Develop LSTM Models for Multi-Step Time Series Forecasting of Household Power Consumption~ 随着智能电表的兴起和太阳能电池板等发电技术的广泛应用,有大量可用的用电数据。这些数据代表了一系列与电力相关的多元时间序列,进而可以用来建模甚至预测未来的用电量。 与其他机器...翻译 2019-05-29 17:11:22 · 28519 阅读 · 3 评论 -
Attention如何在Encoder-Decoder循环神经网络中见效(原理篇)
转眼间来到了二年级下学期,马上就要面临找工作的巨大压力。起风了,唯有努力生存~愿努力可以有所成效。 这一篇想要讲一讲Attention机制。文章框架主要翻译自How Does Attention Work in Encoder-Decoder Recurrent Neural Networks,也参考了一些笔者觉得比较不错的博客。 Attention(注意力机制)是为了提...原创 2019-03-26 15:52:37 · 5160 阅读 · 8 评论 -
如何理解Keras中的TimeDistributed层并在LSTM中使用
老规矩,主要框架译自How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python~,中间加了一点点自己的理解。 长短时记忆网络(LSTMs)是一种流行且功能强大的循环神经网络(RNN)。它们很难配置和应用于任意序列预测问题,即使使用定义良好且“易于使用”的接口(如Python中...原创 2019-03-21 17:00:06 · 21862 阅读 · 13 评论 -
如何利用Keras在深度神经网络中进行堆栈集成(Stacking Ensemble)
译自Machine Learning Mastery~ 模型平均是一种集成技术,其中多个子模型对组合预测的贡献相等。 利用子模型的预期性能,加权各子模型对组合预测的贡献,可以改善模型平均。通过培训一个全新的模型来学习如何最好地组合来自每个子模型的贡献,可以进一步扩展这一点。这种方法被称为Stacked Generalization(堆栈泛化),或简称Stacking,可...原创 2019-01-18 21:24:23 · 5393 阅读 · 22 评论 -
修正的线性激活函数(Relu)如何避免梯度消失
2019年的第一篇博客。主要译自Machine Learning Mastery,加上了一点点自己的想法。如有问题,欢迎批评指正~ 消失梯度问题是在训练深度神经网络时可能遇到的不稳定问题之一。它描述了深度多层前馈网络或循环神经网络无法将有用的梯度信息从模型的输出端传播回模型输入端附近的层的情况。其结果是,具有许多层的模型通常无法在给定的数据集上学习或过早地收敛到较差的解决方案。...原创 2019-01-15 16:27:12 · 6559 阅读 · 0 评论 -
Keras实战:基于LSTM的股价预测方法
Hi,这里是一只殚精竭虑的老鼠屎。最近在处理公交数据,模型效果非常不理想。过程中学习了师兄留下的lstm做的金融数据预测,使用的是keras框架,这里整理一下。这篇博客里面交代了包括数据的处理、模型搭建、模型调参、模型评估等重要环节,十分适合新手入门。师兄留下的jupyter notebook出处不详。目录1 准备工作1.1 引入相关库1.2 引入参数2 构建模型...原创 2018-11-17 10:32:59 · 23060 阅读 · 38 评论