Hadoop解决数据倾斜方法

1. 提前在map进行combine,减少传输的数据量

在Mapper加上combiner相当于提前进行Reduce,将Map端相同key进行聚合,减少shuffle过程中传输的数据量,以及Reduce的计算量。前提是不影响原计算逻辑。如果导致数据倾斜的key大量分布在不同的mapper的时候,这个方法就不是很有效了。

2. 导致数据倾斜的key大量分布在不同的mapper上

  1. 局部聚合+全局聚合
    第一次mapreduce,在map阶段对导致数据倾斜的那些key加上1到n的随机前缀,这样本来相同的key也会被分到多个Reducer中进行聚合,数量就会大大降低。
    第二次mapreduce,去掉随机前缀,进行全局聚合。
    思想:两次MR,第一次将key随机散列到不同的reducer进行处理达到负载均衡的目的。第二次去掉key的随机前缀,进行全局聚合,得到结果。
    缺点:两次MR,性能稍差。
  2. 增加Reducer,提升并行度
    JobConf.setNumReduceTasks(int)
  3. 实现自定义分区
    根据数据分布情况,自定义散列函数,将key均匀分配到不同的Reducer。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值