1. 提前在map进行combine,减少传输的数据量
在Mapper加上combiner相当于提前进行Reduce,将Map端相同key进行聚合,减少shuffle过程中传输的数据量,以及Reduce的计算量。前提是不影响原计算逻辑。如果导致数据倾斜的key大量分布在不同的mapper的时候,这个方法就不是很有效了。
2. 导致数据倾斜的key大量分布在不同的mapper上
- 局部聚合+全局聚合
第一次mapreduce,在map阶段对导致数据倾斜的那些key加上1到n的随机前缀,这样本来相同的key也会被分到多个Reducer中进行聚合,数量就会大大降低。
第二次mapreduce,去掉随机前缀,进行全局聚合。
思想:两次MR,第一次将key随机散列到不同的reducer进行处理达到负载均衡的目的。第二次去掉key的随机前缀,进行全局聚合,得到结果。
缺点:两次MR,性能稍差。 - 增加Reducer,提升并行度
JobConf.setNumReduceTasks(int) - 实现自定义分区
根据数据分布情况,自定义散列函数,将key均匀分配到不同的Reducer。