MayUWell

Learn, Sleep, Learn

801-使得序列递增的最小交换次数

Description

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i]. Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < … < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.


Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation: 
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

  • A, B are arrays with the same length, and that length will be in the range [1, 1000].
  • A[i], B[i] are integer values in the range [0, 2000].

问题描述

整数数组A和B,长度相等且不为0

允许交换A[i]和B[i],,注意下标相同

在一些次数的交换之后,A和B严格递增(严格递增的含义是
给定A和B,返回使A和B严格递增的最小交换次数。输入保证A和B可以严格递增
严格递增的含义是A[1]<A[2]<...A[n]


问题分析

动态规划

交换和不交换是两个动作
那么我们定义状态分别为s和n
s代表交换A[i]和B[i],使得A和B的[0, i]范围严格递增的最小交换个数
n代表不交换A[i]和B[i],使得A和B的[0, i]范围严格递增的最小交换个数

由于输入总能使A和B严格递增,那么状态转换可以如下定义

  1. 当A[i - 1] < A[i]且B[i - 1] < B[i],可以进行0次或者两次交换(注意,s0和n0是对于i - 1而言的)
    s1 = Math.min(s1, s0 + 1)
    n1 = Math.min(n1, n0)
  2. 当A[i - 1] < B[i]且B[i - 1] < A[i],可以进行1次交换
    s1 = Math.min(s1, n0 + 1)
    n1 = Math.min(n1, s0)

解法

class Solution {
    public int minSwap(int[] A, int[] B) {
        int n0 = 0,s0 = 1;

        for(int i = 1;i < A.length;i++){
            int n1 = Integer.MAX_VALUE, s1 = Integer.MAX_VALUE;
            if(A[i - 1] < A[i] && B[i - 1] < B[i]){
                n1 = Math.min(n0, n1);
                s1 = Math.min(s0 + 1, s1);
            }
            if(A[i - 1] < B[i] && B[i - 1] < A[i]){
                n1 = Math.min(s0, n1);
                s1 = Math.min(n0 + 1, s1);
            }
            n0 = n1;
            s0 = s1;
        }

        return Math.min(n0, s0);
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LaputaFallen/article/details/79968593
个人分类: 算法与数据结构
所属专栏: leetcode全解
上一篇动态规划-464-我能赢么
下一篇784-字母大小写排列
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭