# 801-使得序列递增的最小交换次数

Description

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i]. Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < … < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

• A, B are arrays with the same length, and that length will be in the range [1, 1000].
• A[i], B[i] are integer values in the range [0, 2000].

s代表交换A[i]和B[i]，使得A和B的[0, i]范围严格递增的最小交换个数
n代表不交换A[i]和B[i],使得A和B的[0, i]范围严格递增的最小交换个数

1. 当A[i - 1] < A[i]且B[i - 1] < B[i]，可以进行0次或者两次交换(注意,s0和n0是对于i - 1而言的)
s1 = Math.min(s1, s0 + 1)
n1 = Math.min(n1, n0)
2. 当A[i - 1] < B[i]且B[i - 1] < A[i],可以进行1次交换
s1 = Math.min(s1, n0 + 1)
n1 = Math.min(n1, s0)

class Solution {
public int minSwap(int[] A, int[] B) {
int n0 = 0,s0 = 1;

for(int i = 1;i < A.length;i++){
int n1 = Integer.MAX_VALUE, s1 = Integer.MAX_VALUE;
if(A[i - 1] < A[i] && B[i - 1] < B[i]){
n1 = Math.min(n0, n1);
s1 = Math.min(s0 + 1, s1);
}
if(A[i - 1] < B[i] && B[i - 1] < A[i]){
n1 = Math.min(s0, n1);
s1 = Math.min(n0 + 1, s1);
}
n0 = n1;
s0 = s1;
}

return Math.min(n0, s0);
}
}