算法基础代码模板——AcWing学习笔记(一)

作者:yxc
链接:https://www.acwing.com/blog/content/277/
来源:AcWing

目录

快速排序

归并排序算法

整数二分算法

浮点数二分算法模板

高精度加法

高精度减法 

 高精度乘低精度

高精度除以低精度

 一维前缀和

 二维前缀和 

 一维差分

二维差分

 位运算

双指针算法 

离散化 

 区间合并


快速排序

时间复杂度:O(nlog_{2}n),不稳定

(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。

(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。

(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。 

(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序算法

时间复杂度:O(nlogn),稳定

将已有序的子序列合并,得到完全有序的序列。

void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    //首先对左右两路进行排序
    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    //将两个有序序列合并
    int k = 0, i = l, j = mid + 1;
    int tmp[mxn];
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

整数二分算法

查找满足check性质的整数。

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

浮点数二分算法模板

需要体现题目精度要求 可以包容合理误差

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

高精度加法

预处理:

  1. AB两大数以字符串形式输入
  2. 对字符串进行处理,以整型存入vector数组中
  3. 进行以下操作。
// C = A + B, A >= 0, B >= 0,注意结果应倒序输出
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    //默认A>B
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];//计算一位
        C.push_back(t % 10);//处理进位,从最低位存入数组C
        t /= 10;
    }
    
    if (t) C.push_back(t);
    return C;
}

高精度减法 

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;//处理借位
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);//避免t<0
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();//消除最高位的0
    return C;
}

 高精度乘低精度

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;

    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;
}

高精度除以低精度

// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    //注意从最高位开始
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    //C是正的,将C倒序,清空高位0
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

 一维前缀和

线段

S[i] = a[1] + a[2] + ... a[i]
a[l] + ... + a[r] = S[r] - S[l - 1]

 二维前缀和 

面积

S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]

 一维差分

前缀和思想的逆运算,通过构造一个新的数组,使原来的数组的每一个元素是新数组的前缀和。
 

初始化b[ i ]: b[ i ] += a[ i ] , b[ i+1 ] -= a[ i ];

给区间a[l, r]中的每个数加上c:b[l] += c, B[r + 1] -= c

图源:here

二维差分

二维差分的公式

 原矩阵:

类比一维,给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:

S[x1, y1] += c,      S[x2 + 1, y1] -= c,  
S[x1, y2 + 1] -= c,  S[x2 + 1, y2 + 1] += c 

 位运算

  1. 求n的第k位数字: n >> k & 1
  2. 返回n的最后一位1:lowbit(n) = n & -n

双指针算法 

常见问题分类:
    (1) 对于一个序列,用两个指针维护一段区间
    (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

for (int i = 0, j = 0; i < n; i ++ )
{
    while (j < i && check(i, j)) j ++ ;

    // 具体问题的逻辑
}

离散化 

        在一些问题中,我们只关心 n 个数字之间的相对大小关系,而不关心它们具体是多少。
        因此,我们可以用一种叫离散化的技术来将数字映射到 1 ∼ n 的整数, 从而降低问题规模,简化运算。
        通常的实现方法是将所有数字去重排序,然后再重新遍历一遍所有的数字, 通过二分查找找到它们的 “排名”,然后用排名来代替对应的数字。

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素

// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到1, 2, ...n
}

 区间合并

  1. 必须先排序,根据区间的起始start来排序。
  2. 当我们有了有序的区间集合后,就可以遍历每个区间。定义待入队的基准区间(最开始为第一个区间),并且比较目前遍历到的区间的start是否小于等于待入队基准区间end。如果是,那这两个区间可以合并了,修改基准区间的end。否则,这个待入队的基准区间可以直接加入结果队列,然后更新待入队基准区间为刚遍历的区间。

// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{
    vector<PII> res;

    sort(segs.begin(), segs.end());

    int st = -2e9, ed = -2e9;
    for (auto seg : segs)
        if (ed < seg.first)
        {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);

    if (st != -2e9) res.push_back({st, ed});

    segs = res;
}

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值