Self-supervised Learning: Generative or Contrastive总结

Self-supervised Learning: Generative or Contrastive
typemethodfosmodelself-supervisionpretext-task特点备注
generative self-supervised learningAuto-regressive (AR) ModelnlpGPT/GPT-2follow wordsnext-word prediction1. 采用逐项生成 (component-by-component) 的方式来生成完整的数据。
2. advantage:model the context dependency well
3. disadvantages:access its context from one direction
cvPixelRNN/PixelCNN(image)/WavNet(video)follow pixelsnext-pixel prediction
graphGraphRNN/MRNN/GCPN(reinforcement learning)follow edgesnext-edge prediction
Flow-based ModelcvNICE/RealNVP/Glowwhole imageImage reconstruction从数据中估计复杂的高维密度函数。通过一系列可逆变换来进行生成。由于这些变换都是可逆的,因此隐变量(输入)和生成结果(输出)之间可以任意转换
Auto-encoding (AE) ModelNLPFastText/word2vecContext wordsCBOW & SkipGram/CBOWContext Prediction Model (CPM):基于输入预测上下文信息
graphDeepWalk:基于随机游走Graph edgesGraph edges
LINE:基于邻居汇聚
NLPBERT/
SpanBert/Ernie/MLM
Masked words ,Sentence topic/
Masked words
Masked language model,Next senetence prediction
/Masked language model
Denoising AE Model:representation should be robust to the introduction of noise.
GraphGPT-GNNAttribute & EdgeMasked graph generation
CVVAE/VQ-VAE/VQ-VAE2Whole imageImage reconstructionVariational AE Model(变分自编码器):通过对输入信息进行重构,来学习输入信息的表征的均值和方差
GraphVGAE/DVNE/vGraphGraph edgesGraph edges
Hybrid Generative ModelsnlpXLNetMasked wordsPermutation language modelAE+AR
graphGraphAttribute & EdgeSequential graph generationFlow+AR
cvMADEAE+AR
constractive self-supervised learning:通过对比正负样本来学习表示Context-Instance Contrast:上下文与实例的对比,也就是建立局部与全局之间的关联cvRotNet/PIRLSpatial relations Rotation Prediction/Jigsawpredict relative position(PRP):许多数据在其各部分之间包含丰富的空间或序列关系。区别:
1)PRP 关注于学习局部组件之间的相对位置。全局上下文是预测这些关系的隐含要求(例如,了解大象的长相对于预测它头和尾巴的相对位置至关重要);
2)MI 侧重于学习局部组件和全局上下文之间的明确归属关系。局部之间的相对位置被忽略。
nlpALBERTMasked words,Sentence orderMasked language model, Sentence order prediction
cvDeep InfoMax/CPC/AMDIMBelongingMI MaximizationMaximize Nutual Information(MI):focus on learning the explicit belonging relationship betweenlocal parts and global context.
nlpInfoWorld
graphInfoGraph/DeelGraph InfoMax
Instance-Instace Constract:实例级表示,而不是上下文级表示,对于广泛的分类任务来说更为关键cvDeepCluster/Local Aggregation/ClusterFitSimilarity (Instance-Instance)Cluster discrimination(基于聚类判别)首先研究基于聚类的实例与实例之间的对比,也就是利用聚类产生伪标签,这种方法不行。
MoCo/SimCLR/InfoMin/BYOL/SimSiamIdentity (Instance-Instance)Instance discrimination(基于实例判别)moco打破了一正一负,大大增加了负样本的数量。
graphGCC/CMC-Graph/M3S
Generative-Contrastive (Adversarial)Generate  with Complete InputcvVAE-GAN/BI-GAN/AAE/ALIwhole imageImage reconstructionGAN和GAN的变体,目的就是捕获完整信息
Recover with Partial InputCVColorizationImage colorColorizationRecover with Partial Input
InpaintingParts of imagesInpainting
Super-ResolutionDetails of imagesSuper-Resolution
Pretrained Langrage ModelnlpELECTRA/WKLMPretrained Langrage Model
Graph learningGraphANE/GraphGAN/GraphSCANGraph learning
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值