Import “sklearn.model_selection“ could not be resolved

问题描述:

VSCode远程开发中,在conda环境中pip install scikit-learn,然后import

from sklearn.model_selection import LeaveOneOut

报错
Import “sklearn.model_selection” could not be resolved

解决办法

在终端运行

pip install --pre scikit-learn

参考链接

这段代码是一个机器学习模型的训练和评估过程,具体步骤如下: 1. 从sklearn.datasets模块中导入boston数据集。 2. 使用pandas模块读取boston房价数据集,将其存储在data变量中,并显示前5行数据。 3. 从sklearn.model_selection模块中导入train_test_split函数,将数据集划分为训练集和测试集,其中训练集占75%,测试集占25%。 4. 从sklearn.preprocessing模块中导入StandardScaler类,用于对数据进行标准化处理。 5. 对训练集和测试集中的特征数据X进行标准化处理,使用fit()函数对scaler_X进行训练,再使用transform()函数对X_train和X_test进行标准化处理。 6. 从sklearn.neural_network模块中导入MLPRegressor类,用于创建多层感知机回归模型。 7. 创建MLPRegressor对象,并指定模型参数:solver='lbfgs', hidden_layer_sizes=(15, 15), random_state=1。其中,solver参数指定优化算法为拟牛顿法L-BFGS,hidden_layer_sizes参数指定模型中隐藏层的节点数为15,random_state参数指定随机种子。 8. 使用fit()函数对模型进行训练,输入训练集的特征数据X_train和目标数据y_train。 9. 从sklearn.metrics模块中导入r2_score、mean_squared_error和mean_absolute_error函数,用于评估模型的性能。 10. 分别使用score()函数计算训练集和测试集的R2得分,并输出结果。 11. 使用predict()函数对测试集进行预测,计算预测结果与实际结果之间的均方误差和平均绝对误差,并输出结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值