CNN+VGG+ResNet

目录

 CNN卷积神经网络

卷积层

池化层

全连接层

flatten()是对多维数据的降维函数。

VGG

ResNet

Batch Normalization(BN)

CNN卷积神经网络

卷积层

池化层

有两种广泛使用的池化操作——平均池化(average pooling)和最大池化(max pooling),其中最大池化是两者中使用最多的一个操作,其效果一般要优于平均池化。池化层用于在卷积神经网络上减小特征空间维度,但不会减小深度。

全连接层

在全连接层中,我们将最后一个卷积层的输出展平,并将当前层的每个节点与下一层的另一个节点连接起来

全连接,此时需要把特征图平铺成一维向量这步操作称为Flatten,压平后输入特征大小为32*16*16=8192,之后做一次全连接对大小为8192特征变换到大小为128的特征,再依次做两次全连接分别得到64,10

flatten()是对多维数据的降维函数。

flatten(),默认缺省参数为0,也就是说flatten()和flatte(0)效果一样。

python里的flatten(dim)表示,从第dim个维度开始展开,将后面的维度转化为一维.也就是说,只保留dim之前的维度,其他维度的数据全都挤在dim这一维。

VGG

VGG由5层卷积层、3层全连接层、1层softmax输出层构成,层与层之间使用maxpool(最大化池)分开,所有隐藏层的激活单元都采用ReLU函数。

卷积层参数表示为“conv(感受野大小)-通道数”,例如con3-64,表示使用3x3的卷积核,通道数为64

手撕 CNN 经典网络之 VGGNet(理论篇) - 知乎

ResNet

在ResNet网络中有如下几个亮点:

1、提出residual结构(残差结构),并搭建超深的网络结构(突破1000层)

2、使用Batch Normalization加速训练(丢弃dropout)

当堆叠到一定网络深度时,就会出现两个问题。

1、梯度消失或梯度爆炸。

2、退化问题(degradation problem)。

Batch Normalization(BN)

Batch Normalization(BN)超详细解析-CSDN博客

如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出.

反向传播

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值