斐波那契数列(递归 + dp)

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你n ,请计算 F(n) 。

示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:

0 <= n <= 30

递归三部曲

  • 参数和返回值:输入第n个数,输出它的F(n)
  • 单层递归逻辑:F(n) = F(n-1) + F(n -2)
  • 递归终止条件:n < 2
int fib(int N)
{
	if(N < 2)
		return N;
	return fib(N-1) + fib(N-2);
}

动态规划

  • dp数组和下标的含义:第i个数的斐波那契数值为dp[i]
  • 确定递推公式:dp[i] = dp[i-1] + dp[i-2]
  • dp数组的初始化:dp[0] = 0,dp[1] = 1
  • 遍历顺序:从前往后
int fib(int N)
{
	vector<int> dp[N + 1];
	dp[0] = 0;
	dp[1] = 1;
	for(int i = 2; i <= N; i++)
		dp[i] = dp[i-1] + dp[i-2];
	return dp[N];
}

空间优化

每次只需要用到前面的两个数,也就是说没必要保存所有的dp值,用两个数记录即可

int fib(int N)
{
	if(N < 2)
		return N;
	num1 = 0;
	num2 = 1;
	for(int i = 2; i <= N; i++)
	{
		num2 = num2 + num1;
		num1 = num2 - num1;
	}
	return num2;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值