509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你n ,请计算 F(n) 。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
0 <= n <= 30
递归三部曲
- 参数和返回值:输入第n个数,输出它的F(n)
- 单层递归逻辑:F(n) = F(n-1) + F(n -2)
- 递归终止条件:n < 2
int fib(int N)
{
if(N < 2)
return N;
return fib(N-1) + fib(N-2);
}
动态规划
- dp数组和下标的含义:第i个数的斐波那契数值为dp[i]
- 确定递推公式:dp[i] = dp[i-1] + dp[i-2]
- dp数组的初始化:dp[0] = 0,dp[1] = 1
- 遍历顺序:从前往后
int fib(int N)
{
vector<int> dp[N + 1];
dp[0] = 0;
dp[1] = 1;
for(int i = 2; i <= N; i++)
dp[i] = dp[i-1] + dp[i-2];
return dp[N];
}
空间优化
每次只需要用到前面的两个数,也就是说没必要保存所有的dp值,用两个数记录即可
int fib(int N)
{
if(N < 2)
return N;
num1 = 0;
num2 = 1;
for(int i = 2; i <= N; i++)
{
num2 = num2 + num1;
num1 = num2 - num1;
}
return num2;
}