数据分析项目:CDNOW用户消费数据分析(基于MySQL实现)

本报告通过MySQL对CDNOW用户消费数据进行深入分析,揭示了1997年至1998年间该平台的销售趋势、产品价格分布以及用户消费行为。数据清洗过程中处理了空格、数据类型、缺失值和重复记录。分析结果显示,销售额和用户数在1997年一季度达到高峰,后续趋于平稳。用户消费金额集中在低档,大部分用户消费1次后流失,但存在稳定消费群体。产品价格主要集中在10-15美元,1998年3月高价CD销售额显著提升。用户消费行为分析指出,新用户主要在1997年一季度加入,复购率稳定在20%左右,用户生命周期分布不均,营销策略应针对不同用户群体制定。
摘要由CSDN通过智能技术生成

项目背景

CDNow曾经是一家在线音乐零售平台,后被德国波泰尔斯曼娱乐集团公司出资收购,其资产总价值在最辉煌时曾超过10亿美元。

分析目的及思路

本次报告主要利用MYSQL和EXCEL对CDNOW网站用户的消费数据进行分析,了解该网站营业情况。
具体分析从产品分析和用户分析展开。

数据处理

数据导入

数据来源:
和鲸社区:https://www.heywhale.com/mw/project/5e67586ef278cf002d533f89/dataset
数据展示:
1、CDNow曾经是一家在线音乐零售平台,数据集为CDNow网站的用户在1997年1月1日至1998年6月30日期间内购买CD交易明细;
2、文件大小1.85M,数据格式TXT,原始数据共69659条记录;
3、数据集一共有用户ID,购买日期,订单数,订单金额4个字段,文件中无字段名;我理解的这里的订单数指的是该订单含有的CD张数;金额的单位是美元。
在这里插入图片描述
Navicat for MySQL导入数据
在这里插入图片描述

数据清洗

1、字段空格处理

用trim函数去除每一字段值中左右两边空格

update cdnow
set user_id =trim(user_id),
    purchase_date=trim(purchase_date),
    order_cdnum=trim(order_cdnum),
    order_amount=trim(order_amount);

2、数据类型转换

在设计表选项中修改数据类型,确保金额数据显示正常,并避免后续数据分析出现错误
在这里插入图片描述

3、缺失数据处理

select count(*) from cdnow;
#69659
select count(user_id),count(purchase_date),count(order_cdnum),count(order_amount) from cdnow;
#69659

表中不存在null值,无需处理

4、数据重复处理

看到别人的链接中没有处理重复数值,有的链接表示,重复记录是因为同一个用户一天下单两次。我对这个项目数据的理解是,每一记录都是已完成的订单,不存在取消订单等情况;其中订单数order_cdnum就是中用户购买的CD张数,4个字段都一样的记录是重复记录,所以在这里做了重复数据处理这一步。

#第一步,找是否有所有字段都重复的重复记录,确实存在重复记录
select count(user_id),count(purchase_date),count(order_cdnum),count(order_amount) from cdnow;
#69659
select count(distinct user_id,purchase_date,order_cdnum,order_amount) from cdnow;
#69404

#第二步,加上主键id列,辅助重复值的删除
ALTER table cdnow add column id int(14) primary key auto_increment first;

#第三步,删除重复记录
with t as (
select distinct c1.* FROM cdnow c1 join cdnow c2 
on c1.user_id=c2.user_id and c1.purchase_date=c2.purchase_date and c1.order_cdnum=c2.order_cdnum and c1.order_amount=c2.order_amount
and c1.id<> c2.id )

delete from cdnow 
where 
id in (select id from t)
and
id not in (select min(id) as id_min from t group by t.user_id,t.purchase_date,t.order_cdnum,t.order_amount);

#第四步,用第一步语句检查,并去掉添加的主键id列,这里是考虑到不同引擎可能会导致重新启动时候id列不连续,所以先去掉
alter table cdnow drop column id;

5、数据0值

观察到金额数据存在 0值。

select * from cdnow where order_amount=0 or order_cdnum=0;#80
select * from cdnow where order_amount=0 and order_cdnum=0; #null
select * from cdnow where order_amount=0;#80,存在80条有订单数但无订单金额的记录
select * from cdnow where order_cdnum=0;#=' '和=0是等价的,null

存在80条订单金额为0的数据,但是订单数存在。这些数据可能是优惠活动赠送、限免、优惠券抵扣的订单,或者是数据缺失。无法判断数值意义,先不删除,当作正常数据。

数据预处理后得到69404条数据。

数据分析

产品销售分析

数据集的时间跨度为1997年1月1日至1998年6月30日,可以做季度或月度为单位的销售分析。
在这里插入图片描述
在这里插入图片描述
以上4个图表说明:
(1)1997年的第一季度,所有指标的数据较高,从1997年4月开始便处于平稳状态,至1998年6月,数据维持在一定水平上下波动;
(2)一般,我们以销售额作为电商零售业务的核心指标。观察CD销售额,发现在1997年3月,1997年7月,1997年11月,1998年3月,销售额相较于相邻前后两月数据,均出现小幅提升。

通过4个图表相互对比发现:
(1)每个月的CD销量和CD销售额变动趋势完全一致;
(2)1997年3月,环比上月用户数下降,但订单数、销量和销售额均提升,说明该月用户有多次购买的行为;
(3)1997年7月,环比上月用户数下降,订单数下降,但销量和销售额均有提升,说明该月订单中有较大额度的订单;
(4)1997年11月和1998年3月,环比上月销量和销售额提升的同时,用户数和订单数都在提升;
(5)后续分析用户价值时可以着重考虑引起1997年3月和1997年7月销量和销售额增长的用户行为规律。

产品价格分析

浏览部分数据,发现每张CD的单价大多在10元左右,于是分析网站的产品价格,对网站的产品价格档次进行探索。

1、所有订单CD均价

先考虑所有订单的平均单张CD价格(order_amount/order_cdnum),分布整体右偏,均价在10元到15元之间的产品最多,98.5%的产品分布在0元至40元区间内。大于40元的CD销量在图上几乎看不到。
在这里插入图片描述
为了避免均值处理的对实际订单情况的统计误差,下面只对仅1张CD的订单,即单品订单进行分析。

2、单品订单CD价格

对于order_cdnum=1的所有订单(31221条,占总体45.0%),各个区间的频数由以下条形图展现,可以看出该网站的CD价格分布整体右偏,单价在10元到15元之间的产品最多,97.3%的产品分布在0元至40元区间内。由于CD数为1的订单数量较大,CD数为1的订单与整体订单结论类似。大于40元的CD销量在图上几乎看不到。
在这里插入图片描述
初次了解情况时将价格细分较细,也可以将分组间隔取大。

select sum(case when a.cd_price>=0  and a.cd_price <5  then 1 end) as num_5,
	   sum(case when a.cd_price>=5  and a.cd_price <10 then 1 end) as num_10,
	   sum(case when a.cd_price>=10 and a.cd_price <15 then 1 end) as num_15,
	   sum(case when a.cd_price>=15 and a.cd_price <20 then 1 end) as num_20,
	   sum(case when a.cd_price>=20 and a.cd_price <25 then 1 end) as num_25,
	   sum(case when a.cd_price>=25 and a.cd_price <30 then 1 end) as num_30,
	   sum(case when a.cd_price>=30 and a.cd_price <35 then 1 end) as num_35,
	   sum(case when a.cd_price>=35 and a.cd_price <40 then 1 end) as num_40,
	   sum(case when a.cd_price>=40 and a.cd_price <45 then 1 end) as num_45,
	   sum(case when a.cd_price>=45 and a.cd_price <50 then 1 end) as num_50,
	   sum(case when a.cd_price>=50 and a.cd_price <55 then 1 end) as num_55,
	   sum(case when a.cd_price>=55 and a.cd_price <60 then 1 end) as num_60,
	   sum(case when a.cd_price>=60 and a.cd_price <65 then 1 end) as num_65,
	   sum(case when a.cd_price>=65 and a.cd_price <70 then 1 end) as num_70,
	   sum(case when a.cd_price>=70 and a.cd_price <75 then 1 end) as num_75,
	   sum(case when a.cd_price>=75 and a.cd_price <80 then 1 end) as num_80,
	   sum(case when a.cd_price>=80 and a.cd_price <85 then 1 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值