CDNow网站用户消费行为分析

本文通过对CDNow网站的历史销售数据进行分析,揭示了用户整体和个体的消费行为,包括每月销售额、消费次数、消费人数和销量。通过RFM模型进行用户分层,发现大部分用户属于一般发展顾客,而重要价值顾客占比相对较低,提示需要改进运营策略以提高用户复购率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、项目背景

二、提出问题

 三、数据处理(EXCEL)

1.查看数据

2.描述性统计

3.数据处理

四、用户整体消费行为分析

1.每月的总销售额

 2.每月的消费次数

 3.每月的消费人数

 4.每月的销量

 5.总结

五、用户个体的消费行为分析

1.用户消费金额,消费次数的描述性统计

2.用户消费金额,消费次数的散点图

3.用户消费金额的分布图(二八法则)

4.用户订单数的分布图(二八法则)

六、用户消费周期分析

1.用户购买周期

2.用户生命周期

七、用户分层-RFM模型

八、用户质量分析

1.购买一次的人数和复购人数


一、项目背景

CDNow曾经是一家在线音乐零售平台,后被德国波泰尔斯曼娱乐集团公司出资收购,其资产总价值在最辉煌时曾超过10亿美元。本文通过该网站销售数据分析消费者用户行为,使运营部门在营销时更加具有针对性,从而节省成本,提升效率。

二、提出问题

对用户行为进行特征分析,具体框架如下:

 三、数据处理(EXCEL)

1.查看数据

购买日期表示时间,但是数据类型不是时间格式,需要将数据类型转换为日期格式。购买金额保留两位小数。

数据中存在用户在同一天或者不同天购买多次的情况,如用户ID为2的用户就在1月12日买了两次。

2.描述性统计

 从描述性分析可以看出,订单数的平均值为2.41,订单金额的平均值为35.89。

购买商品的标准差为2.33,说明数据具有一定的波动性,中位数为2,说明大家一次性购买的数量不多。最大值为99,数字比较高。购买金额的情况差不多,大部分订单都集中在小额。

一般而言,消费类的数据分布,都是长尾形态。大部分用户都是小额,然而小部分用户贡献了收入的大头,俗称二八。

3.数据处理

(1)查看空值

查看数据类型、数据是否存在空值;原数据没有空值,很干净的数据。接下来我们要将时间的数据类型转化。

进行数据处理的时候,经常会遇见数据类型的问题,当拿到数据的时候,首先要确定拿到的是正确的数据类型,如果数据类型不正确需要进行数据类型的转化,再进行数据处理。

(2)分析说明

我们将月份作为消费行为的主要事件窗口,选择哪种时间窗口取决于消费频率。

将处理好的数据导入MySQL进行分析。

四、用户整体消费行为分析

1.每月的总销售额

select date_format(购买日期,'%Y-%m') 年月,round(sum(订单金额),2)
from cdnow
group by date_format(购买日期,'%Y-%m')

 

 2.每月的消费次数

select date_format(购买日期,'%Y-%m') 年月,count(1)
from cdnow
group by date_format(购买日期,'%Y-%m')

 

 3.每月的消费人数

select date_format(购买日期,'%Y-%m') 年月,count(distinct 用户ID)
from cdnow
group by date_format(购买日期,'%Y-%m')

 

 4.每月的销量

select date_format(购买日期,'%Y-%m') 年月,SUM(订单数)
from cdnow
group by date_format(购买日期,'%Y-%m')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值