目录
一、项目背景
CDNow曾经是一家在线音乐零售平台,后被德国波泰尔斯曼娱乐集团公司出资收购,其资产总价值在最辉煌时曾超过10亿美元。本文通过该网站销售数据分析消费者用户行为,使运营部门在营销时更加具有针对性,从而节省成本,提升效率。
二、提出问题
对用户行为进行特征分析,具体框架如下:
三、数据处理(EXCEL)
1.查看数据
购买日期表示时间,但是数据类型不是时间格式,需要将数据类型转换为日期格式。购买金额保留两位小数。
数据中存在用户在同一天或者不同天购买多次的情况,如用户ID为2的用户就在1月12日买了两次。
2.描述性统计
从描述性分析可以看出,订单数的平均值为2.41,订单金额的平均值为35.89。
购买商品的标准差为2.33,说明数据具有一定的波动性,中位数为2,说明大家一次性购买的数量不多。最大值为99,数字比较高。购买金额的情况差不多,大部分订单都集中在小额。
一般而言,消费类的数据分布,都是长尾形态。大部分用户都是小额,然而小部分用户贡献了收入的大头,俗称二八。
3.数据处理
(1)查看空值
查看数据类型、数据是否存在空值;原数据没有空值,很干净的数据。接下来我们要将时间的数据类型转化。
进行数据处理的时候,经常会遇见数据类型的问题,当拿到数据的时候,首先要确定拿到的是正确的数据类型,如果数据类型不正确需要进行数据类型的转化,再进行数据处理。
(2)分析说明
我们将月份作为消费行为的主要事件窗口,选择哪种时间窗口取决于消费频率。
将处理好的数据导入MySQL进行分析。
四、用户整体消费行为分析
1.每月的总销售额
select date_format(购买日期,'%Y-%m') 年月,round(sum(订单金额),2)
from cdnow
group by date_format(购买日期,'%Y-%m')
2.每月的消费次数
select date_format(购买日期,'%Y-%m') 年月,count(1)
from cdnow
group by date_format(购买日期,'%Y-%m')
3.每月的消费人数
select date_format(购买日期,'%Y-%m') 年月,count(distinct 用户ID)
from cdnow
group by date_format(购买日期,'%Y-%m')
4.每月的销量
select date_format(购买日期,'%Y-%m') 年月,SUM(订单数)
from cdnow
group by date_format(购买日期,'%Y-%m')