[比赛分享] Kaggle-Toxic Comment 中使用的各种深度学习模型, 处理方法和套路

摘要

最近在做一个Kaggle比赛, 于此分享一下所使用的DL模型(经过简化),希望能对初学者有所帮助。
(最后结果,公榜23/4512,私榜87/4512,过拟合了啊啊啊啊T.T)

比赛地址:

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

模型中所使用的词嵌入请参看如下博客:

http://blog.csdn.net/leyounger/article/details/78949709


各种模型的总结

https://www.kaggle.com/jagangupta/lessons-from-toxic-blending-is-the-new-sexy


Text相关比赛的套路

  1. 文本预处理
  2. 分词
  3. 特征工程(词袋,词嵌入,句向量等)
  4. CV与KFold
  5. 模型融合(Stacking,加权融合等)

使用的深度模型

TextRNN

inp = Input(shape=(MAX_SEQUENCE_LENGTH, ))
x_3 = Embedding(len(word_index) + 1,
                EMBEDDING_DIM,
                weights=[get_embeddings()],
                input_length=MAX_SEQUENCE_LENGTH,
                trainable=False)(inp)
x_3 = SpatialDropout1D(0.2)(x_3)
x_3 = Bidirectional(GRU(128, return_sequences=True, dropout=0.2, kernel_initializer='glorot_uniform'),merge_mode='concat')(x_3)
avg_pool_3 = GlobalAveragePooling1D()(x_3)
max_pool_3 = GlobalMaxPooling1D()(x_3)
attention_3 = Attention()(x_3)
x = keras.layers.concatenate([avg_pool_3, max_pool_3, attention_3])

x = Dense(6, activation="sigmoid")(x)

adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
sgd = keras.optimizers.SGD(lr=0.001)

model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy',
              optimizer=adam,
              metrics=['accuracy', 'binary_crossentropy'])

TextCNN

inp = Input(shape=(MAX_SEQUENCE_LENGTH, ))
x_3 = Embedding(len(word_index) + 1,
                    EMBEDDING_DIM,
                    weights=[get_embeddings()],
                    input_length=MAX_SEQUENCE_LENGTH,
                    trainable=False)(inp)
x_3 = SpatialDropout1D(0.2)(x_3)

cnn1 = Conv1D(256, 2, padding='same', strides=1, activation='relu')(x_3)
cnn2 = Conv1D(256, 3, padding='same', strides=1, activation='relu')(x_3)
cnn3 = Conv1D(256, 4, padding='same', strides=1, activation='relu')(x_3)
cnn4 = Conv1D(256, 5, padding='same', strides=1, activation='relu')(x_3)
cnn5 = Conv1D(256, 6, padding='same', strides=1, activation='relu')(x_3)
cnn = keras.layers.concatenate([cnn1, cnn2, cnn3, cnn4, cnn5], axis=-1)

cnn1 = Conv1D(128, 3, padding='same', strides=1, activation='relu')(cnn)
cnn1 = MaxPooling1D(pool_size=200)(cnn1)
cnn2 = Conv1D(128, 4, padding='same', strides=1, activation='relu')(cnn)
cnn2 = MaxPooling1D(pool_size=200)(cnn2)
cnn3 = Conv1D(128, 5, padding='same', strides=1, activation='relu')(cnn)
cnn3 = MaxPooling1D(pool_size=200)(cnn3)
cnn = keras.layers.concatenate([cnn1, cnn2, cnn3], axis=-1)

x = Flatten()(cnn)
x = Dropout(0.2)(x)

x = Dense(128, kernel_initializer='he_normal')(x)
x = PReLU()(x)
x = BatchNormalization()(x)
x = Dropout(0.2)(x)
x = Dense(6, activation="sigmoid")(x)

adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
sgd = keras.optimizers.SGD(lr=0.001)

model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy',
              optimizer=adam,
              metrics=['accuracy', 'binary_crossentropy'])

RCNN

inp = Input(shape=(MAX_SEQUENCE_LENGTH, ))
x_4 = Embedding(len(word_index) + 1,
                    EMBEDDING_DIM,
                    weights=[get_embeddings()],
                    input_length=MAX_SEQUENCE_LENGTH,
                    trainable=False)(inp)
x_3 = SpatialDropout1D(0.2)(x_4)
x_3 = Bidirectional(GRU(196, return_sequences=True, dropout=0.2, kernel_initializer='he_normal'),
                    merge_mode='concat')(x_3)
x_3 = Conv1D(96, kernel_size=3, padding="valid", kernel_initializer="glorot_uniform")(x_3)
avg_pool_3 = GlobalAveragePooling1D()(x_3)
max_pool_3 = GlobalMaxPooling1D()(x_3)
att_3 = Attention()(x_3)
x = keras.layers.concatenate([avg_pool_3, max_pool_3, att_3])
x = Dense(6, activation="sigmoid")(x)

adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
sgd = keras.optimizers.SGD(lr=0.001)

model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy',
              optimizer=adam,
              metrics=['accuracy', 'binary_crossentropy'])
### 回答1: Toxic Comment Classification Challenge 是一个由 Kaggle 主办的自然语言处理比赛,旨在通过算法分类毒性评论,帮助社交媒体等平台更好地管理和监管用户的评论行为。以下是解决该挑战的一些一般性步骤: 1. 理解数据集:了解比赛的目标和数据集,探索数据集的评论文本和标签,了解各个标签的含义和比例,以便在模型训练和评估进行适当的调整和处理。 2. 数据清洗:对原始数据进行处理和清洗,例如去除HTML标签、符号、链接、停用词等,使用文本清洗技术来规范化文本数据。 3. 特征提取:将文本数据转换为数值特征,以便训练机器学习算法,可以使用词袋模型、TF-IDF 等文本表示方法来提取特征,还可以使用词向量等预训练模型来提取更高级别的语义特征。 4. 模型选择:选择适合该问题的机器学习算法或深度学习模型,例如逻辑回归、朴素贝叶斯、支持向量机、循环神经网络等,对比不同模型在验证集或交叉验证上的性能表现。 5. 模型调参:对模型的超参数进行调整和优化,例如学习率、正则化系数、隐藏层大小等,可以使用网格搜索或随机搜索等方法来进行超参数优化。 6. 集成模型:通过组合多个模型来提高模型性能,可以使用投票、堆叠等模型集成方法。 7. 结果提交:在测试集上进行预测并提交结果,了解最终的得分和排名情况。 总之,解决 Toxic Comment Classification Challenge 需要综合运用数据清洗、特征提取、模型选择和调参等技术,并不断进行实验和优化,才能得到最好的结果。 ### 回答2: Toxic Comment Classification Challenge,即有毒评论分类挑战,是一个旨在解决社交媒体上毒性评论识别的挑战。以下是解决该挑战的一些策略和方法: 1. 数据清洗与预处理:对于这个挑战,首先需要进行数据清洗和预处理。这包括去除特殊字符、标点符号、停用词等,还可以进行词干提取和词语向量化的操作,以确保数据的一致性和可用性。 2. 特征工程:在解决挑战之前,确定一组合适的特征对于模型的性能至关重要。可以使用基于TF-IDF、词袋模型或词嵌入的方法抽取有意义的特征,也可以考虑使用n-gram模型来捕捉不同特征的组合。 3. 建立模型:选择合适的机器学习算法或深度学习模型进行有毒评论分类。常用的算法包括朴素贝叶斯、逻辑回归、支持向量机等。在对长文本分类时,可以尝试使用循环神经网络(RNN)或注意力机制(Attention)来提高模型性能。 4. 模型调优与集成:在建立模型之后,进行模型调优是非常重要的。可以通过调整模型的超参数、使用交叉验证等方法来提高模型的泛化能力。此外,还可以使用集成学习的方法,如随机森林、Adaboost等来进一步提高模型的性能。 5. 强化学习与自然语言处理:通过应用强化学习方法,可以让模型根据环境的反馈不断优化模型性能。此外,利用自然语言处理技术,如情感分析、命名实体识别等,可以更好地理解文本内容并进行分类。 6. 模型评估与反馈:在解决挑战的过程,及时进行模型评估和反馈是很重要的。通过应用相关的评价指标(如准确率、召回率、F1-score等),可以评估模型的性能,并根据评估结果及时调整策略和方法。 综上所述,解决Toxic Comment Classification Challenge需要进行数据清洗与预处理、特征工程、选择合适的算法与模型模型调优与集成、应用强化学习与自然语言处理等一系列步骤和方法,以提高模型对于毒性评论的分类准确性和效果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值