BZOJ1068

传送门:BZOJ1068

比较微妙的区间Dp。

令f(i,j)表示压缩[i,j]段时最少的字符数,我们发现无法转移,于是将[i,j]中有无M纳入状态:f(i,j,k),k属于[0,1],表示区间中有无M。

我们总是假定[i,j]前有一个M或是0。

然后方程就比较显然了。

k=1
f(i,j,k)=min{f(i,i’,1)+f(i’+1,j,1)+1} //表示分两段压缩

k=1或0
f(i,j,k)=min{f(i,i’,k)+j-i’} //表示只压缩前一段

[i,j]段如分成等长的两段完全相等
f(i,j,k)=f(i,(j+i)/2,0)+1 //表示是使用一个M-R压缩
注意这个转移要判断[i,j]段长度是否为偶数

有意思的一点是,按照这个定义f(i,i,1)应该是无穷大,但可以证明f(i,i,1)为1才能得出正确答案。

代码上的小细节见下(这题代码神丑)

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;

const int INF=0x3f3f3f3f;

int f[55][55][3];
bool used[55][55][3];
string st;

bool Check(int a,int b)
{
    int len=b-a+1;
    if(len%2==1)
        return false;
    for(int i=a;i<=(a+b)/2;i++)
        if(st[i]!=st[i+len/2])
            return false;
    return true;
}

int Dp(int a,int b,int c)//f(i,j,k)
{
    if(used[a][b][c])   //visited f(a,b,c)
        return f[a][b][c];
    if(Check(a,b))  //can be squeezed
        f[a][b][c]=Dp(a,(a+b)/2,0)+1;
    if(c)
        for(int i=a;i<b;i++)
            f[a][b][c]=min(f[a][b][c],Dp(a,i,1)+Dp(i+1,b,1)+1); //another M is in i
    for(int i=a;i<b;i++)
        f[a][b][c]=min(f[a][b][c],Dp(a,i,c)+b-i);   //  R is in i
    //printf("%d %d %d %d\n",f[a][b][c],a,b,c);
    used[a][b][c]=true;
    return f[a][b][c];
}

void Readdata()
{
    freopen("loli.in","r",stdin);
    cin>>st;
}

void First()
{
    memset(f,0x3f,sizeof(f));
    memset(used,false,sizeof(used));
    for(int i=0;i<st.length();i++){
        f[i][i][0]=f[i][i][1]=1;
        used[i][i][0]=used[i][i][1]=true;
    }
}

void Solve()
{
    printf("%d\n",min(Dp(0,st.length()-1,0),Dp(0,st.length()-1,1)));
}

void Close()
{
    fclose(stdin);
    fclose(stdout);
}

int main()
{
    Readdata();
    First();
    Solve();
    Close();
    return 0;
}
发布了54 篇原创文章 · 获赞 5 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览