说明
梯度下降在应用于回归方程(机器学习中的)和一般函数有一些方法上的区别。一般函数没有样本的干扰所以相对来说考虑的东西比较少,上代码
代码
#-*-coding:utf-8-*-
import sympy as sy
import numpy as np
def gradient_descent(symbol_expression,independent_vars_dict,alpha,epsilon=0.001):
    '''
    symbol_expression Symbol表达式,即数学公式
    independent_vars_dict symbol_expression中变量和初始值
    alpha 步长
    epsilon 停止条件
    '''
    delta=1e6
    result_rec = symbol_expression.subs(independent_vars_dict)
    #记录开始的点和值
    step_recs=[]
    val=independent_vars_dict.copy()
    val['value']=result_rec.evalf()
    step_recs.append(val)
    _vars=list(independent_vars_dict.keys())
    vars_dict={}
    for i in _vars:
        vars_dict[i]=symbol_expression.diff(i)
    while delta>epsilon:
        for j in _vars:
            independent_vars_dict[j]=independent_vars_dict[j]-alpha*vars_dict[j].subs(independent_vars_dict).evalf()
        result_last=result_rec
        result_rec = symbol_expression.subs(independent_vars_dict)
        #记录每次的值
        val = independent_vars_dict.copy()
        val['value'] = result_rec.evalf()
        step_recs.append(val)
        if np.abs(result_rec-result_last)<=epsilon:
            break
    return step_recs,result_rec
x=sy.Symbol('x')
y=sy.Symbol('y')
z=-(sy.exp(-(x**2+y**2)/2)/(2*sy.pi))
m={x:np.random.randint(-3,3),y:np.random.randint(-3,3)}
step=0.01
u=gradient_descent(z,m,step,0.00001)
#3维曲面图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d #这不能删
Y=X=np.linspace(-3,3,100)
X,Y=np.meshgrid(X,Y)
Z=(-np.exp(-(X**2+Y**2)/2)/(2*np.pi))
fig=plt.figure()
ax =fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,rstride=1,cstride=1,cmap=plt.get_cmap('bwr'))
#3维曲面增加记号,梯度过程
t=np.array([list(j.values()) for j in u[0]])
print(t)
ax.plot(t[...,0],t[...,1],t[...,2],marker='^',c='k')
plt.show()
结果图

二维的标准正态分布,取负方程求的梯度下降,见黑色那条线。gradient_descent可以用于多维,了解一下,可以弄懂的。ε≡٩(๑>₃<)۶ 一心向学
                  
                  
                  
                  
                            
本文深入探讨了梯度下降算法在机器学习中的应用,通过代码示例解释了其在回归方程和一般函数上的实现差异。特别展示了如何使用Python和SymPy库进行梯度下降优化,并通过三维曲面图直观呈现了优化过程。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2698
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            