说明
梯度下降在应用于回归方程(机器学习中的)和一般函数有一些方法上的区别。一般函数没有样本的干扰所以相对来说考虑的东西比较少,上代码
代码
#-*-coding:utf-8-*-
import sympy as sy
import numpy as np
def gradient_descent(symbol_expression,independent_vars_dict,alpha,epsilon=0.001):
'''
symbol_expression Symbol表达式,即数学公式
independent_vars_dict symbol_expression中变量和初始值
alpha 步长
epsilon 停止条件
'''
delta=1e6
result_rec = symbol_expression.subs(independent_vars_dict)
#记录开始的点和值
step_recs=[]
val=independent_vars_dict.copy()
val['value']=result_rec.evalf()
step_recs.append(val)
_vars=list(independent_vars_dict.keys())
vars_dict={}
for i in _vars:
vars_dict[i]=symbol_expression.diff(i)
while delta>epsilon:
for j in _vars:
independent_vars_dict[j]=independent_vars_dict[j]-alpha*vars_dict[j].subs(independent_vars_dict).evalf()
result_last=result_rec
result_rec = symbol_expression.subs(independent_vars_dict)
#记录每次的值
val = independent_vars_dict.copy()
val['value'] = result_rec.evalf()
step_recs.append(val)
if np.abs(result_rec-result_last)<=epsilon:
break
return step_recs,result_rec
x=sy.Symbol('x')
y=sy.Symbol('y')
z=-(sy.exp(-(x**2+y**2)/2)/(2*sy.pi))
m={x:np.random.randint(-3,3),y:np.random.randint(-3,3)}
step=0.01
u=gradient_descent(z,m,step,0.00001)
#3维曲面图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d #这不能删
Y=X=np.linspace(-3,3,100)
X,Y=np.meshgrid(X,Y)
Z=(-np.exp(-(X**2+Y**2)/2)/(2*np.pi))
fig=plt.figure()
ax =fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,rstride=1,cstride=1,cmap=plt.get_cmap('bwr'))
#3维曲面增加记号,梯度过程
t=np.array([list(j.values()) for j in u[0]])
print(t)
ax.plot(t[...,0],t[...,1],t[...,2],marker='^',c='k')
plt.show()
结果图
二维的标准正态分布,取负方程求的梯度下降,见黑色那条线。gradient_descent可以用于多维,了解一下,可以弄懂的。ε≡٩(๑>₃<)۶ 一心向学