前面的博客线性回归python实现讲了如何用python里sklearn自带的linearRegression()函数来拟合数据的实现方式。今天咱们来介绍下,如何用梯度下降法拟合数据。
还记得梯度下降法是怎么做的吗?忘记的同学可以回头看下前面的博客线性回归。咱们还是拿之前博客线性回归python实现里的数据进行讲解。
假设咱们现在想用 y=θ1⋅x+θ0 y = θ 1 ⋅ x + θ 0 来拟合这组数据,由于在梯度下降的算法里,咱们是通过不断的改变 θ θ 的值,经过多次迭代,最终判断 J(θ) J ( θ ) 达到我们的预期范围,则停止迭代。一般梯度下降法迭代很多次后都会收敛,通过 J(θ) J ( θ ) 的表达式
【八】机器学习之路——梯度下降法python实现
最新推荐文章于 2024-12-04 10:04:48 发布
本文介绍了如何使用Python实现梯度下降法来拟合数据,以线性回归为例,通过不断调整参数θ,使损失函数J(θ)达到预期值,最终展示出迭代后的图形效果。
摘要由CSDN通过智能技术生成