POJ-2151 Check the difficulty of problems (概率dp)

24 篇文章 0 订阅

题目链接:http://poj.org/problem?id=2151

题目大意:一场比赛中有T个队伍,M个题目,已知第 i 个队伍解出第 j 个问题的概率为 p[i][j]。现在要使得举办的比赛满足以下两个要求:1、每个队伍至少解出一个问题;2、解出最多问题的那个队伍至少解出N个问题。求举办的比赛满足这两个条件的概率是多少。

题目思路:这个题目运用到了一些概率论的简单知识。

P1 = P(每个队伍至少解出一个题目) = 1 - P(每个队伍都没有答对问题);

P2 =  P(所有队伍的解题数都小于N且每个队伍的解题数都至少为1);

那么最后的结果P(每个队伍至少解出一个问题 且 解出最多问题的那个队伍至少解出N个问题) = P1 - P2。

我们设 dp[i][j][k] 表示第 i 个队伍在前 j 个题目里答对了 k 个题目,就可以得到如下的状态转移方程:

dp[i][j][k] = dp[i][j-1][k-1]*p[i][k] + dp[i][j-1][k]*(1-p[i][k]);

接着我们设q[i][j]表示第 i 个队伍最后最多解出 j 个题目的概率,那么

q[i][j] = ∑(dp[i][M][k]),(k = 0,1,2,...,j);

那么P1 = ∏(1-p[i][0])(i = 1,2,3,...,T),P2 = ∏(p[i][N-1]-p[i][0])。

这样就可以解出最后的结果P了。

具体实现看代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;

int M,T,N;
double p[1007][31];
double q[1007][31];
//q[i][j]表示第i个队伍最后答对不超过j个题目的概率;
double dp[1007][31][31];
//dp[i][j][k]表示第i个队伍前j个题目答对k个题的概率。

int main(){
    while(~scanf("%d%d%d",&M,&T,&N)){
        if(M == 0 && T == 0 && N == 0) return 0;
        for(int i = 1;i <= T;i++)
            for(int j = 1;j <= M;j++)
                scanf("%lf",&p[i][j]);
        memset(q,0,sizeof(q));
        memset(dp,0,sizeof(dp));
        for(int i = 1;i <= T;i++){ 
            dp[i][0][0] = 1;
            for(int j = 1;j <= M;j++)
                dp[i][j][0] = dp[i][j-1][0]*(1-p[i][j]);
            for(int j = 1;j <= M;j++){
                for(int k = 1;k <= j;k++){
                    dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j]);
                }
            }
            q[i][0] = dp[i][M][0];
            for(int k = 1;k <= M;k++)
                q[i][k] = q[i][k-1]+dp[i][M][k];
        }
        double p1 = 1,p2 = 1;
        for(int i = 1;i <= T;i++)
            p1 *= (1-q[i][0]);
        for(int i = 1;i <= T;i++)
            p2 *= (q[i][N-1]-q[i][0]);
        printf("%.3f\n",p1-p2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值