题目链接:http://poj.org/problem?id=2151;
题目大意:一场比赛中有T个队伍,M个题目,已知第 i 个队伍解出第 j 个问题的概率为 p[i][j]。现在要使得举办的比赛满足以下两个要求:1、每个队伍至少解出一个问题;2、解出最多问题的那个队伍至少解出N个问题。求举办的比赛满足这两个条件的概率是多少。
题目思路:这个题目运用到了一些概率论的简单知识。
P1 = P(每个队伍至少解出一个题目) = 1 - P(每个队伍都没有答对问题);
P2 = P(所有队伍的解题数都小于N且每个队伍的解题数都至少为1);
那么最后的结果P(每个队伍至少解出一个问题 且 解出最多问题的那个队伍至少解出N个问题) = P1 - P2。
我们设 dp[i][j][k] 表示第 i 个队伍在前 j 个题目里答对了 k 个题目,就可以得到如下的状态转移方程:
dp[i][j][k] = dp[i][j-1][k-1]*p[i][k] + dp[i][j-1][k]*(1-p[i][k]);
接着我们设q[i][j]表示第 i 个队伍最后最多解出 j 个题目的概率,那么
q[i][j] = ∑(dp[i][M][k]),(k = 0,1,2,...,j);
那么P1 = ∏(1-p[i][0])(i = 1,2,3,...,T),P2 = ∏(p[i][N-1]-p[i][0])。
这样就可以解出最后的结果P了。
具体实现看代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
int M,T,N;
double p[1007][31];
double q[1007][31];
//q[i][j]表示第i个队伍最后答对不超过j个题目的概率;
double dp[1007][31][31];
//dp[i][j][k]表示第i个队伍前j个题目答对k个题的概率。
int main(){
while(~scanf("%d%d%d",&M,&T,&N)){
if(M == 0 && T == 0 && N == 0) return 0;
for(int i = 1;i <= T;i++)
for(int j = 1;j <= M;j++)
scanf("%lf",&p[i][j]);
memset(q,0,sizeof(q));
memset(dp,0,sizeof(dp));
for(int i = 1;i <= T;i++){
dp[i][0][0] = 1;
for(int j = 1;j <= M;j++)
dp[i][j][0] = dp[i][j-1][0]*(1-p[i][j]);
for(int j = 1;j <= M;j++){
for(int k = 1;k <= j;k++){
dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j]);
}
}
q[i][0] = dp[i][M][0];
for(int k = 1;k <= M;k++)
q[i][k] = q[i][k-1]+dp[i][M][k];
}
double p1 = 1,p2 = 1;
for(int i = 1;i <= T;i++)
p1 *= (1-q[i][0]);
for(int i = 1;i <= T;i++)
p2 *= (q[i][N-1]-q[i][0]);
printf("%.3f\n",p1-p2);
}
return 0;
}