链接:https://www.nowcoder.com/acm/contest/147/A
来源:牛客网
题目描述
Niuniu has recently learned how to use Gaussian elimination to solve systems of linear equations.
Given n and a[i], where n is a power of 2, let's consider an n x n matrix A.
The index of A[i][j] and a[i] are numbered from 0.
The element A[i][j] satisfies A[i][j] = a[i xor j],
https://en.wikipedia.org/wiki/Bitwise_operation#XOR
Let p = 1000000007.
Consider the equation
A x = b (mod p)
where A is an n x n matrix, and x and b are both n x 1 row vector.
Given n, a[i], b[i], you need to solve the x.
For example, when n = 4, the equations look like
A[0][0]*x[0] + A[0][1]*x[1] + A[0][2]*x[2] + A[0][3]*x[3] = b[0] (mod p)
A[1][0]*x[0] + A[1][1]*x[1] + A[1][2]*x[2] + A[1][3]*x[3] = b[1] (mod p)
A[2][0]*x[0] + A[2][1]*x[1] + A[2][2]*x[2] + A[2][3]*x[3] = b[2] (mod p)
A[3][0]*x[0] + A[3][1]*x[1] + A[3][2]*x[2] + A[3][3]*x[3] = b[3] (mod p)
and the matrix A can be decided by the array a.
It is guaranteed that there is a unique solution x for these equations.
输入描述:
The first line contains an integer, which is n. The second line contains n integers, which are the array a. The third line contains n integers, which are the array b. 1 <= n <= 262144 p = 1000000007 0 <= a[i] < p 0 <= b[i] < p
输出描述:
The output should contains n lines. The i-th(index from 0) line should contain x[i]. x[i] is an integer, and should satisfy 0 <= x[i] < p.
示例1
输入
复制
4 1 10 100 1000 1234 2143 3412 4321
输出
复制
4 3 2 1
题目大意:题目给出数组a和b的值,要求求出线性方程组的解,其中,代表异或运算。
题目思路:这个题只需要将式子转化一下,就是一个FWT的板子题了。
题目中给出,可以转化为,即。
这个就是一个裸的FWT的式子了。接下来对于数组a和数组b分别做一次FWT,再令b=a/b,再对b数组做一次FWT的逆变换,就可以求出结果了。
具体实现看代码:
#include <bits/stdc++.h>
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lowbit(x) x&-x
#define pb push_back
#define MP make_pair
#define clr(a) memset(a,0,sizeof(a))
#define _INF(a) memset(a,0x3f,sizeof(a))
#define FIN freopen("in.txt","r",stdin)
#define fuck(x) cout<<"["<<x<<"]"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>pii;
//head
const int MX=3e5+7;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
ll qpow(ll a,ll b){
ll res=1;
while(b){
if(b&1) res=(res*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return res;
}
void FWT_xor(int *a,int N,int opt){
int inv2=qpow(2,mod-2);
for(int i=1;i<N;i<<=1){
for(int p=i<<1,j=0;j<N;j+=p){
for(int k=0;k<i;++k){
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%mod;a[i+j+k]=(X+mod-Y)%mod;
if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%mod,a[i+j+k]=1ll*a[i+j+k]*inv2%mod;
}
}
}
}
int n;
int a[MX],b[MX];
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<n;i++) scanf("%d",&b[i]);
FWT_xor(a,n,1);FWT_xor(b,n,1);
for(int i=0;i<n;i++) a[i]=b[i]*qpow(a[i],mod-2)%mod;
FWT_xor(a,n,-1);
for(int i=0;i<n;i++) printf("%d\n",a[i]%mod);
return 0;
}