Eigenvalues of Circulant Matrix

本文将介绍循环矩阵(Circulant Matrix)特征值的两种求法。

1. 相似变换

首先,阶数为 2 n 2^n 2n 的循环矩阵,可以表示为如下形式:
( T S S T ) \begin{pmatrix}T & S \\ S & T \end{pmatrix} (TSST)

对其进行相似变换,变换矩阵为
F = 1 2 ( I I I − I ) = F − 1 F=\frac{1}{\sqrt{2}}\begin{pmatrix}I & I \\ I & -I \end{pmatrix} = F^{-1} F=2 1(IIII)=F1

结果为
( T + S 0 0 T − S ) \begin{pmatrix} T+S & 0 \\ 0 & T-S \end{pmatrix} (T+S00TS)

之后递归地对 T + S \small T+S T+S T − S \small T-S TS 进行相同变换,求其特征值。

变换至最后,矩阵变为对角阵,对角线元素即为特征值。

例子:
( 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ) \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} 0111101111011110

第一次变换
( 1 2 0 0 2 1 0 0 0 0 − 1 0 0 0 0 − 1 ) \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} 1200210000100001

对左上角再做一次变换
( 3 0 0 0 0 − 1 0 0 0 0 − 1 0 0 0 0 − 1 ) \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} 3000010000100001

所以矩阵的特征值为 λ 1 = 3 , λ 2 = λ 3 = λ 4 = − 1 \lambda_1=3, \lambda_2=\lambda_3=\lambda_4=-1

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值