HDU - 4407 Sum (容斥+质数分解)

28 篇文章 0 订阅

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4407

题目大意:给出一个长度为n的数组a,一开始数组a中的值为a[i] = i。接下来要进行m次操作,每次操作分为两种操作:

1、l r p :查询区间 [l,r] 内所有与p互质的数的和;

2、x c : 把a[x]的值变为 c ;

题目思路:要做这个题要注意到题目给出的两个关键点,1、a[i] = i2、m<=1000。

我们现在先考虑没有第二种操作的情况,每次就对区间 [l,r] 进行查询,由于a[i] = i 的,那么整个区间的和我们可以很轻松的利用等差数列求和公式求出来。对于 p ,我们由于是要求与p互质的数的和,那么我们将区间中与p不互质的数的和减掉即可。

现在问题就变成了如何求区间 [l,r] 内与p不互质的数的和。我们可以先将p进行质数分解。假设p的质因子数为sz,那么通过容斥原理可以知道,区间 [l,r] 内与p不互质的数的和 = 是p的一个质因子的倍数的数的和 - 是p的两个质因子乘积的倍数的数的和 + 是p的三个质因子乘积的倍数的数的和 +...+ (-1)^(sz-1)*(是p的sz个质因子乘积的倍数的数的和)。这个容斥我们可以通过二进制枚举来完成,由于m不大,所以时间复杂度是允许的。

现在再来考虑有第二种操作的情况,由于第二种操作是单点更新,每次只会对一位的取值产生影响。我们可以用一个map来记录更新的情况。在查询的时候,我们先算出没有更新情况下的答案,再暴力去遍历所有的更新情况,每次如果x在区间[l,r]内,我们先判断x是否与p互素,是的话就将答案减去x,再判断修改后的值c是否与p互素,是的话就将答案加上c。

具体实现看代码:

#include <bits/stdc++.h>
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lowbit(x) x&-x
#define pb push_back
#define MP make_pair
#define clr(a) memset(a,0,sizeof(a))
#define _INF(a) memset(a,0x3f,sizeof(a))
#define FIN freopen("in.txt","r",stdin)
#define fuck(x) cout<<"["<<x<<"]"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>pii;
//head
const int MX = 4e5+5;

int n,m,_;
map<ll,ll>mp;
int prime[MX],pcnt;
vector<int>pr[MX];
bool is_prime[MX];
void prime_init(){
    for(int i = 0;i < MX;i++) is_prime[i] = true;
    pcnt = 0;
    for(int i = 2;i < MX;i++){
        if(is_prime[i])
            prime[pcnt++] = i;
        for(int j = 0;j < pcnt;j++){
            if(i*prime[j] >= MX) break;
            is_prime[i*prime[j]] = false;
            if(i%prime[j] == 0)
                break;
        }
    }
    for(int i = 2;i < MX;i++){
    	int x = i;
    	for(int j = 0;j < pcnt && (ll)prime[j]*prime[j] <= x;j++){
    		if(x%prime[j]==0){
    			pr[i].pb(prime[j]);
    			while(x%prime[j] == 0) x/=prime[j];
    		}
    	}
    	if(x!=1) pr[i].pb(x);
    }
}

ll gcd(ll a,ll b){
	return b==0?a:gcd(b,a%b);
}

ll cal(int N,int p){
	ll res = 0;
	int sz = pr[p].size();
	for(int i = 1;i < (1<<sz);i++){
		ll cnt = 1;
		int num = 0,tmp = i;
		for(int j = 0;j < sz;j++){
			if((tmp>>j)&1){
				num++;
				cnt *= pr[p][j];
			}
		}
		tmp = N/cnt;
		if(num&1) res += 1ll*(tmp+1)*tmp*cnt/2;
		else res -= 1ll*(tmp+1)*tmp*cnt/2;
	}
	return res;
}

void solve(){
	scanf("%d%d",&n,&m);
	mp.clear();
	int op,l,r,p;
	while(m--){
		scanf("%d",&op);
		if(op==2){
			scanf("%d%d",&l,&p);
			mp[l]=p;
		} else{
			scanf("%d%d%d",&l,&r,&p);
			ll ans = 1ll*(l+r)*(r-l+1)/2;
			ans -= cal(r,p) - cal(l-1,p);
			for(auto nw=mp.begin();nw!=mp.end();nw++){
				int x = (*nw).fi,y = (*nw).se;
				if(x >= l && x <= r){
					if(gcd(x,p) == 1) ans -= x;
					if(gcd(y,p) == 1) ans += y;
				}
			}
			printf("%lld\n",ans);
		}
	}
}

int main(){
	prime_init();
	for(scanf("%d",&_);_;_--) solve();
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值