题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4407
题目大意:给出一个长度为n的数组a,一开始数组a中的值为a[i] = i。接下来要进行m次操作,每次操作分为两种操作:
1、l r p :查询区间 [l,r] 内所有与p互质的数的和;
2、x c : 把a[x]的值变为 c ;
题目思路:要做这个题要注意到题目给出的两个关键点,1、a[i] = i;2、m<=1000。
我们现在先考虑没有第二种操作的情况,每次就对区间 [l,r] 进行查询,由于a[i] = i 的,那么整个区间的和我们可以很轻松的利用等差数列求和公式求出来。对于 p ,我们由于是要求与p互质的数的和,那么我们将区间中与p不互质的数的和减掉即可。
现在问题就变成了如何求区间 [l,r] 内与p不互质的数的和。我们可以先将p进行质数分解。假设p的质因子数为sz,那么通过容斥原理可以知道,区间 [l,r] 内与p不互质的数的和 = 是p的一个质因子的倍数的数的和 - 是p的两个质因子乘积的倍数的数的和 + 是p的三个质因子乘积的倍数的数的和 +...+ (-1)^(sz-1)*(是p的sz个质因子乘积的倍数的数的和)。这个容斥我们可以通过二进制枚举来完成,由于m不大,所以时间复杂度是允许的。
现在再来考虑有第二种操作的情况,由于第二种操作是单点更新,每次只会对一位的取值产生影响。我们可以用一个map来记录更新的情况。在查询的时候,我们先算出没有更新情况下的答案,再暴力去遍历所有的更新情况,每次如果x在区间[l,r]内,我们先判断x是否与p互素,是的话就将答案减去x,再判断修改后的值c是否与p互素,是的话就将答案加上c。
具体实现看代码:
#include <bits/stdc++.h>
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lowbit(x) x&-x
#define pb push_back
#define MP make_pair
#define clr(a) memset(a,0,sizeof(a))
#define _INF(a) memset(a,0x3f,sizeof(a))
#define FIN freopen("in.txt","r",stdin)
#define fuck(x) cout<<"["<<x<<"]"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>pii;
//head
const int MX = 4e5+5;
int n,m,_;
map<ll,ll>mp;
int prime[MX],pcnt;
vector<int>pr[MX];
bool is_prime[MX];
void prime_init(){
for(int i = 0;i < MX;i++) is_prime[i] = true;
pcnt = 0;
for(int i = 2;i < MX;i++){
if(is_prime[i])
prime[pcnt++] = i;
for(int j = 0;j < pcnt;j++){
if(i*prime[j] >= MX) break;
is_prime[i*prime[j]] = false;
if(i%prime[j] == 0)
break;
}
}
for(int i = 2;i < MX;i++){
int x = i;
for(int j = 0;j < pcnt && (ll)prime[j]*prime[j] <= x;j++){
if(x%prime[j]==0){
pr[i].pb(prime[j]);
while(x%prime[j] == 0) x/=prime[j];
}
}
if(x!=1) pr[i].pb(x);
}
}
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
ll cal(int N,int p){
ll res = 0;
int sz = pr[p].size();
for(int i = 1;i < (1<<sz);i++){
ll cnt = 1;
int num = 0,tmp = i;
for(int j = 0;j < sz;j++){
if((tmp>>j)&1){
num++;
cnt *= pr[p][j];
}
}
tmp = N/cnt;
if(num&1) res += 1ll*(tmp+1)*tmp*cnt/2;
else res -= 1ll*(tmp+1)*tmp*cnt/2;
}
return res;
}
void solve(){
scanf("%d%d",&n,&m);
mp.clear();
int op,l,r,p;
while(m--){
scanf("%d",&op);
if(op==2){
scanf("%d%d",&l,&p);
mp[l]=p;
} else{
scanf("%d%d%d",&l,&r,&p);
ll ans = 1ll*(l+r)*(r-l+1)/2;
ans -= cal(r,p) - cal(l-1,p);
for(auto nw=mp.begin();nw!=mp.end();nw++){
int x = (*nw).fi,y = (*nw).se;
if(x >= l && x <= r){
if(gcd(x,p) == 1) ans -= x;
if(gcd(y,p) == 1) ans += y;
}
}
printf("%lld\n",ans);
}
}
}
int main(){
prime_init();
for(scanf("%d",&_);_;_--) solve();
return 0;
}