logistic回归详解一:为什么要使用logistic函数

从线性分类器谈起

  给定一些数据集合,他们分别属于两个不同的类别。例如对于广告数据来说,是典型的二分类问题,一般将被点击的数据称为正样本,没被点击的数据称为负样本。现在我们要找到一个线性分类器,将这些数据分为两类(当然实际情况中,广告数据特别复杂,不可能用一个线性分类器区分)。用X表示样本数据,Y表示样本类别(例如1与-1,或者1与0)。我们线性分类器的目的,就是找到一个超平面(Hyperplan)将两类样本分开。对于这个超平面,可以用以下式子描述: 

ωTx+b=0

  对于logistic回归,有: 

hθ(x)=g(θTx)=11+eθTx

  其中  x  为样本, x=[x1,x2,,xn]  为n维向量,函数g为我们常说的logistic函数。g的更一般公式为: 

g(z)=11+ez

  这个公式,对机器学习稍微有点了解的同学可能都特别熟悉,不光在logistic回归中,在SVM中,在ANN中,都能见到他的身影,应用特别广泛。大部分资料在谈到这个式子时候,都是直接给出来。但是不知道大家有没有想过,既然这个式子用途这么广泛,那我们为什么要用它呢?

  是不是已经有好多人愣住了。大家都是这么用的。书上都是这么写的啊。是的,但是当一个东西老在你眼前晃来晃去的时候,你是不是应该想想为什么呢?反正对于我来说,如果一个东西在我眼前都出现了第三次了而我还不知其所以然,我一定会去想方设法弄明白为什么。

为什么要用Logistic函数

  学过模式识别的同学肯定学过各种分类器。分类器中最简单的自然是线性分类器,线性分类器中,最简单的应该就属于感知器了。在上个世纪五六十年代,感知器就出现了: 

y=0,i=1nωixb

y=1,i=1nωix>b

  感知器的思想,就是对所有特征与权重做点积(内积),然后根据与阈值做大小比较,将样本分为两类。稍微了解一点神经网络的同学,对一下这幅图一定不陌生:

这里写图片描述

  没错,这幅图描述的就是一个感知器。 
  我考研考的是控制原理,如果学过控制原理或者学过信号系统的同学,就知道感知器相当于那两门课中的阶跃函数:

这里写图片描述

  这两者的本质都是一致的,即通过划定一个阈值,然后比较样本与阈值的大小来分类。

  这个模型简单直观,实现起来也比较容易(要不怎么说是最简单的现行分类器呢)。但是问题在于,这个模型不够光滑。第一,假设 t0=10 ,现在有一个样本进来,最后计算出来的值为10.01,你说这个样本分类应该是为1还是0呢?好像都不太靠谱的样子。第二,这个函数在 t0  这点有个阶跃,有从0到1的突变,导致这点不连续,在数学上处理起来也不方便。

  啰啰嗦嗦写了这么多了,终于轮到logistic函数出场了。对比前面的感知器或者阶跃函数,他有什么优点呢? 
这里写图片描述

  通过logistic函数的图像,我们很容易总结出他的以下优点: 
  1.他的输入范围是 +  ,而之于刚好为(0,1),正好满足概率分布为(0,1)的要求。我们用概率去描述分类器,自然比单纯的某个阈值要方便很多; 
  2.他是一个单调上升的函数,具有良好的连续性,不存在不连续点。

看了一下,几乎所有的回答都只解释了“为什么可以用sigmoid”,而没有解释“为什么要用sigmoid”。虽然也有回答提到了exponential family中bernoulli的形式,但高票回答基本只说明了sigmoid的各种良好性质。


若是光从这个角度解释的话,probit也具有相同的性质,为什么除了做GLM的,基本上就没人用呢?


说到底源于sigmoid,或者说exponential family所具有的最佳性质,即maximum entropy的性质。
虽然不清楚历史上孰先孰后,但这并不妨碍maximum entropy给了logistic regression一个很好的数学解释。


为什么maximum entropy好呢?entropy翻译过来就是熵,所以maximum entropy也就是最大熵。熵原本是information theory中的概念,用在概率分布上可以表示这个分布中所包含的不确定度,熵越大不确定度越大。所以大家可以想象到,均匀分布熵最大,因为基本新数据是任何值的概率都均等。


而我们现在关心的是,给定某些假设之后,熵最大的分布。也就是说这个分布应该在满足我假设的前提下越均匀越好。比如大家熟知的正态分布,正是假设已知mean和variance后熵最大的分布。


回过来看logistic regression,这里假设了什么呢?首先,我们在建模预测 Y|X,并认为 Y|X 服从bernoulli distribution,所以我们只需要知道 P(Y|X);其次我们需要一个线性模型,所以 P(Y|X) = f(wx)。接下来我们就只需要知道 f 是什么就行了。而我们可以通过最大熵原则推出的这个 f,就是sigmoid。


其实前面也有人剧透了bernoulli的exponential family形式,也即是 1/ (1 + e^-z)


具体推导详见:http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf


  写到这里,小伙伴们应该都明白为什么要使用logistic函数了吧。 
  敬请期待logistic系列后续文章。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值