监管约谈、警告、罚款,屡教不改的嘀嗒出行何以IPO?

来源 | 司库财经 作者 | 张宁

触碰监管红线的警铃不断响起,嘀嗒出行为何仍然因为非法违规经营网约车而遭到监管约谈?

2020年12月7日,交通运输新业态协同监管部际联席会议办公室对嘀嗒、哈啰等顺风车平台进行提醒式约谈

平台要依法依规开展经营,立行立改,修正顺风车产品,不得以顺风车名义提供非法网约车服务,切实消除安全风险隐患。

据了解,监管部门对网约车和顺风车平台定位不同,前者属于经营性客运服务,而顺风车主要是分摊车主出行成本,要求是不盈利。

为了不扰乱出行市场运营环境,区分两者,监管部门对顺风车平台提出四项合规要求:

一是应以车主自身出行需求为前提、事先发布出行信息;二是由出行线路相同的人选择合乘车辆;三是不以盈利为目的,分摊部分出行成本或免费互助;四是每车每日合乘次数应有一定限制:

监管部门即从信息发布、路线、费用、次数上对顺风车业务进行详细规定。

合规细则虽然出台,但嘀嗒出行却擦着合规要求的边缘,以顺风车的名义开展网约车业务

据了解,在车主APP中,嘀嗒出行上线“附近订单”功能,车主在未发布行程的情况下,便可以看到不同需求的顺风车订单。

嘀嗒出行的“附近订单”功能与监管四项规则中的“应以车主自身出行需求为前提、事先发布出行信息”相违背。

车主不提前发布路线,乘车人随时可以招到顺风车,在功能上,嘀嗒出行的业务更像是非法经营的网约车业务。

虽然此次被约谈后,嘀嗒出行已对外表示:已对部分产品进行了优化和修正。但监管的约谈真的能止住嘀嗒出行打擦边球的野心吗?

其实在没有取得网约车牌照的情况下,以顺风车名义开展网约车业务,嘀嗒出行已经不是第一次

2019年4月,合肥市监管部门明确指出嘀嗒出行违背顺风车“公益无偿性互助”、“分摊成本”的原则:

在未取得经营许可情况下,擅自开展所谓顺风车经营活动,其营运信息未接入主管部门监管平台,收费标准明显高于实际发生的燃料成本,以顺风车名义变相违规从事网约车经营活动。

此后合肥市运管处对嘀嗒出行进行约谈:

要求平台公司严格按照有关规定开展自查自纠,坚决严禁以顺风车等名义变相从事网约车经营活动,并清理包括嘀嗒出行在内的7.9万余辆不合规网约车。

2020年2月下旬,北京市交通委在对嘀嗒出行检查中,发现嘀嗒出行未取得经营许可,擅自从事网约车经营活动,属于违法行为。

此后, 北京交通委根据《北京市查处非法客运若干规定》、《网络预约出租汽车经营服务管理暂行办法》,对其予以15万元行政处罚。

除了各地监管部门对平台直接的行政处罚,部分顺风车车主按照嘀嗒出行的操作流程接单,但却被地方执法人员认定为:未取得经营许可,擅自从事或者变相从事网约车经营活动。

在近两年内,监管机构的直接行政处罚和车主被执法人员处罚的间接信息,都在不断提示嘀嗒出行管理层——产品的功能模式有问题,急需改正。

触碰监管红线的警铃不断响起,但如今,嘀嗒出行为何仍然因为非法违规经营网约车而遭到监管约谈?

这种屡教不改、暗度陈仓的现象说明,它不是产品功能设置问题,而是商业问题。

据嘀嗒出行招股书显示,2019年,嘀嗒出行顺风车业务为其提供1.64亿的收益,占到总收益的比重达到88%,是其最主要的营收支柱。

而在市场占有率上,嘀嗒出行也是一家独大,2019年,嘀嗒出行在顺风车市场的占有率达到70%,是名副其实的行业老大,

1.64亿收益和70%市占率的背后,则是嘀嗒出行的无奈

据司库财经了解,中国四轮出行市场包括出租车扬招、出租车网约车、网约车、顺风车四个细分市场。其中顺风车市场最小,2019年订单量为3亿单,仅占到四轮出行市场总单数的0.99%。

这也就意味着,在顺风车的细小市场中,占据7成市场的嘀嗒出行,在营收、净利润增长上已经触顶。而网约车98亿/年的订单量,显然是嘀嗒出行的主要突围方向

但平台获取《网约车经营许可证》条件极为苛刻,平台需要投资几十亿建立安全体系以及近万人的客服团队,即便连资金雄厚、野心膨胀的美团也在网约车领域折戟:

在此前7个试运营的城市中,美团网约车仅在上海和南京两个城市获得《网约车经营许可证》。

可是嘀嗒出行自身条件够不上,拿不到营业许可证。

在丰满的理想和残酷的现实条件的矛盾中,嘀嗒出行开始游走在监管红线上,用“附近订单”的功能,披着顺风车的合法外衣,从事非法违规的网约车业务。

嘀嗒出行违规经营网约车并未一天两天,而是被监管屡次警告,但都屡次不改、暗度陈仓,这其中既有商业利益的诱惑,网约车每年近百亿单的业务量实在太美,也有对监管机构、法律规则的蔑视:

相比网约车的百亿市场,约谈、警告、几十万的罚款算得了什么?但随着监管对“以顺风车名义提供非法网约车”的警告、整顿,屡教不改的嘀嗒出行何以IPO?

内容概要:文章介绍了针对COVID-19的药物再利用的创新方法,这种方法融合了基于文献的知识(LitCovid和CORD-19数据集)及先进的知识图谱补全技术。具体采用了基于神经网络的TransE、RotatE等多种算法预测药物再利用的潜力,并通过开放和封闭的发现模式为预测结果提供合理的机制解释,包括发现模式、准确性分类及定性评估等手段,增强了方法的实用性。研究表明,TransE表现最优,并成功预测并验证了一系列药物作为COVID-19的治疗候选人选。此外,方法不仅适用于COVID-19,还具备应用于其他疾病药物再利用及其他临床问题解决的潜力。此研究为快速高效地推进药物再利用提供了一个新的计算框架。 适合人群:生物医学科研人员,从事药品再利用、人工智能药物筛选的专业研究人员,对生物信息数据分析和处理感兴趣的学者或技术人员。 使用场景及目标:① 利用计算模型预测药物能否被重新应用于新的适应症,尤其是在面对突发公共卫生事件时加快新药物的研发进程。② 对现有药物进行再评价,以发现更广泛、安全、有效的治疗用途,为临床治疗提供依据和理论指导。③ 探讨通过自动化手段发掘药物作用机理的技术路径。 其他说明:作者团队来自多个国家和地区,研究获得了多项国家级基金支持,论文详尽描述了实验细节,并附上了全部代码和数据资源供后续拓展和重复研究使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值