KDY-C++-CSP-二轮模拟题(2)-----ZHX补题报告

1.比赛情况

T1 下棋T2 汪洋T3 删数T4 平分糖果总分
100pts(AC)0pts(WA)0pts(NP)90pts(TLE)190

                                赛后AK

2.赛中概况

第一题难度跟昨天差不多,用的是结构体排序,15分钟就A了,比较顺利。

然后做的第四题,第四题开始没大仔细读,编完后调试调出了十几个bug,改完之后又发现思路不对,又重新写(其实没啥难度,主要是思维),然后耗时30分钟左右编完(蒟蒻的自己)

第二题也是非常的 水 ,我用的dfs 写了一大串最后只能输出0。正解是用前缀和做的,代码挺容易理解的。第三题直接没思路,没怎么做。

3.题目分析

T1 下棋

赛中情况:AC

1.1 问题描述

Meowowco 最近沉迷下棋。

众所周知,棋盘上一局有 𝑛n 个玩家一起游戏。

我们的棋子称为”英雄”,英雄分为11、22、33星。11 个 33 星英雄可以由 33 个 22 星英雄合成,11 个 22 星英雄可以由 33 个 11 星英雄合成。

现在给出每名玩家的英雄阵容,我们定义阵容强度为 18𝑥+3𝑦+𝑧18x+3y+z,其中 𝑥x 为 33 星英雄个数,𝑦y 为两星英雄个数,𝑧z 为一星英雄个数,其中可以用低星英雄合成高星英雄后再计算阵容强度。

根据玩家的阵容强度,将玩家序号进行排序,并按阵容强度从大到小的顺序输出玩家的序号(若阵容强度相同,则把玩家序号(第𝑖i个输入的玩家序号为𝑖i)小的排在前面)。

1.2 输入格式

从文件chess.in中读取数据。

第一行输入一个整数 𝑛n (1≤𝑛≤1000001≤n≤100000),表示有𝑛n名玩家参加游戏。

接下来𝑛n行,每行包含三个整数,代表玩家 𝑖i 的一星、二星、三星英雄的数量。

1.3 输出格式

输出到文件chess.out中。

将玩家序号进行排序,并按阵容强度顺序输出玩家的序号(若阵容强度相同,则按玩家序号排序)。

1.4 输入样例1

9

2 3 1

1 3 3

0 0 4

1 4 3

4 1 4

1 4 1

0 1 4

0 1 4

2 3 2

1.5 输出样例1

5 4 7 8 2 3 9 6 1

1.6 输入样例2

2

1 2 0

1 2 2

1.7 输出样例2

2 1

1.8 数据描述

保证所有数据点均满足 1≤𝑛≤105​​,0≤𝑥,𝑦,𝑧≤109​​。

分析

求出转化后的阵容强度和序号即可(三年OI一场空,不开long long见祖宗)

AC码 :

#include<bits/stdc++.h>
using namespace std;
const int N=500500;
struct qq{
	long long x,y,z;
	long long id,sum;
}a[N];
bool cmp(qq f,qq l){
	if(f.sum!=l.sum){
		return f.sum>l.sum;
	}else{
		return f.id<l.id;
	}
}
int main(){
	freopen("chess.in","r",stdin);
	freopen("chess.out","w",stdout);
	long long n;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i].z>>a[i].y>>a[i].x;
		if(a[i].z>=3){
			a[i].y+=(a[i].z/3);
			a[i].z%=3;
		}if(a[i].y>=3){
			a[i].x+=(a[i].y/3);
			a[i].y%=3;
		}a[i].id=i;
		a[i].sum=a[i].x*18+a[i].y*3+a[i].z*1;
	}sort(a+1,a+n+1,cmp);
	for(int i=1;i<=n;i++){
		cout<<a[i].id<<" ";
	}
	return 0;
}

T2 汪洋

2.1 问题描述

Meowowco 连夜坐飞机去参加上海国家会展中心的 BilibiliWorld 2023,可是到现场时,已经是一片汪洋。。。

就算是这样,Meowowco 也不算白来一趟,因为场馆里还有许多可爱的 coser,她可以和这些 coser 一起合影,然后发说说羡慕她那可怜的队友。

场馆可以看成一张由 n×nn×n 个格子构成的矩阵。场馆内的格子可能被水淹没,Meowowco 趟水走过去可能会影响心情,因此这些格子上的值为 负数。但是另外的一些格子上站着可爱的 coser,如果 Meowowco 可以与那些 coser 合影,那么她就会变得开心,因此这些格子的值为 正数

Meowowco 最开始的心情为 100100 点,她在逛 BW 的过程中:

如果走到值为正数的格子,说明可以和可爱的 coser 拍照,因此会增加心情。

如果走到值为负数的格子,说明 Meowowco 需要趟水,因此心情值会下降。

Meowowco 从 (1,1)(1,1) 点向右出发,即朝 (1,2)(1,2) 点出发,她每次移动只能移动到 一个相邻的格子,并且她需要按照下面的路线逛一圈:

沿着上一步的方向继续移动

进行顺时针 9090 度转向,(注意不可以在同一个格子内连续转向)

不再逛那些逛过的格子(除了起点)

其中转向指的是:如果上一步向右走,那么转向之后则为向下走;如果上一步向左走,那么转向之后则为向上走……

那么逛完 BW 之后,肯定是要从 (1,1)(1,1) 点离开然后回家的,那么问题来了,Meowowco 离开时心情值最大是多少。

2.2 输入格式

从文件BigWater.in中读取数据。

第一行输入一个整数 nn,表示地图的大小。

第二到 N+1N+1 行,每行包含 nn 个整数 aija​ij​​,表示每个格子的值。

保证 (1,1)(1,1) 点为 00。

2.3 输出格式

输出到文件BigWater.out中。

输出一个整数,表示 Meowowco 最大的心情值。

2.4 输入样例1
 
 
  1. 5
  2. 0 -3 8 -2 3
  3. 3 -1 -3 -10 -6
  4. 9 -9 -6 10 -7
  5. -2 -4 -9 6 -10
  6. -1 8 -7 10 -5
2.5 输出样例1
 
 
  1. 129
2.6 输入样例2
 
 
  1. 5
  2. 0 5 2 2 -7
  3. 10 7 -5 7 1
  4. 4 -1 -5 4 -6
  5. 3 -2 3 4 0
  6. -6 -1 -8 9 -6
2.7 输出样例2
 
 
  1. 142
2.8 数据描述

保证所有数据点均满足 1≤n≤1031≤n≤10​3​​,∣ai∣≤100∣a​i​​∣≤100。

分析:

利用前缀和的方法,在输入过程中 把地图分成一个个矩形,计算矩形内的数字总和(sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j])。分别枚举轮廓上的数字总和(sum[i][j]-sum[i-1][j-1]+sum[1][j]+sum[i][1]-sum[1][1]-a[1][j]-a[i][1]),选出最大值。

AC码:

#include<bits/stdc++.h>
using namespace std;
int sum[1019][1045]={0},a[1045][1019];
int main(){
	
	int n,maxx=0;
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			cin>>a[i][j];
			sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
		}
	}for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			maxx=max(maxx,sum[i][j]-sum[i-1][j-1]+sum[1][j]+sum[i][1]-sum[1][1]-a[1][j]-a[i][1]);
		}
	}cout<<100+maxx;
	return 0;
} 

T3 删数

赛中情况  WA 0pts

3.1 问题描述

有一个集合,初始状态里面有数字 11、22、33、44、55、……、1145141919810114514​1919810​​,你可以理解为很多正整数。

现在给你一个长度为 nn 数组 a(1≤ai≤109)a(1≤a​i​​≤10​9​​),每次操作将当前集合中第 a1a​1​​ 小、第 a2a​2​​ 小、……、第 ana​n​​ 小的数同时移除。

现在有 qq 次询问,每次询问包含一个整数 xx,查询从初始状态到删除 xx 需要操作多少次。若无法删除,输出 0

3.2 输入格式

从文件delnum.in中读取数据。

第一行包含两个正整数 n(1≤n≤105)n(1≤n≤10​5​​),表示数组大小。

接下来一行包含 nn 个正整数 a1a​1​​,a2a​2​​,……,ana​n​​,含义如题目描述所述。

接下来一行包含一个正整数 qq,表示查询次数。

接下来 qq 行,每行包含一个正整数 xx。

数据保证 a1<a2<.....<an≤109a​1​​<a​2​​<.....<a​n​​≤10​9​​

3.3 输出格式

输出到文件delnum.out中。

对于每次询问,输出占一行,包含一个整数,表示删除 xx 需要操作多少次。若无法删除,输出 0

3.4 输入样例
 
 
  1. 5
  2. 1 2 3 4 5
  3. 1
  4. 100
3.5 输出样例
 
 
  1. 20
3.6 输入样例
 
 
  1. 5
  2. 1 3 9 14 20
  3. 5
  4. 114
  5. 514
  6. 1919
  7. 810
  8. 233
3.7 输出样例
 
 
  1. 27
  2. 107
  3. 388
  4. 159
  5. 45

3.8 数据描述

保证所有数据点均满足 1≤n≤1051≤n≤10​5​​,1≤ai≤1091≤a​i​​≤10​9​​,1≤q≤501≤q≤50,1≤x≤1091≤x≤10​9​​。

 简单分析 :

   简简单单     思维题

找找规律就能A。

AC码:

#include<bits/stdc++.h>
using namespace std;
int n,q,a[114514],x;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}cin>>q;
	while(q--){
		cin>>x;
		int sum=0,f=0,ans=0;
		for(int i=n;i>0;i--){
			if(a[i]<=x){
				ans+=(x-a[i])/i;
				x=a[i]+(x-a[i])%i;
				if(x>a[i]){
					x-=i;
					ans++;
				}
			}if(x==a[i]){
				cout<<ans+1<<endl;
				f=1;
				break;
			}
		}if(!f)cout<<"0\n";
	}
	return 0;
} 

 T4 平分糖果

4.1 问题描述

小可的妈妈给了小可很多的糖果,已经糖果都有美味程度,美味程度用1~6的整数表示。

有一天达达来小可家做客,小可要把糖果分给达达,现在已知了美味程度为 i 的糖果有 a[i] 个,请问小可能不能把糖果平分成美味程度之和相同的两部分。

4.2 输入格式

多组输入,每行输入6个数字,表示美味程度为 i 的糖果有 a[i] 个。

以输入一行6个0作为终止条件。

4.3 输出格式

对于每组输入,第一行输出为: Collection #k: ,k为第几组输入。

第二行输出为:如果可以平均分,则输出Can be divided.,否则输出Can't be divided. 。

4.4 输入样例
 
 
  1. 1 0 1 2 0 0
  2. 1 0 0 0 1 1
  3. 0 0 0 0 0 0
4.5 输出样例
 
 
  1. Collection #1:
  2. Can't be divided.
  3. Collection #2:
  4. Can be divided.
4.6 数据描述

20%的数据:糖果总数不超过100

100%的数据:糖果总数不超过 20000

分析:

确定平分a[1]的值求2,3,4,5,6。满足==t表示能平分。

于是就有了:

#include<bits/stdc++.h>
using namespace std;
const int N=100500;
int main(){
	freopen("candy.in","r",stdin);
	freopen("candy.out","w",stdout);
	int p=0;
	while(++p){
		int a[11];
		int sum=0,t;
		bool flag=true,fflag=false;
		for(int i=1;i<=6;i++){
			cin>>a[i];
			sum+=(a[i]*i);
			if(a[i]!=0)flag=false;
		}if(flag==true)break;
		cout<<"Collection #"<<p<<":"<<endl;
		if(sum%2)cout<<"Can't be divided.\n\n";
		else{
			t=sum/2;
			for(int i=0;i<=a[1]&&t>=i;i++){
				for(int j=0;j<=a[2]&&t>=2*j+i;j++){
					for(int k=0;k<=a[3]&&t>=3*k+i+j*2;k++){
						for(int l=0;l<=a[4]&&t>=4*l+i+j*2+k*3;l++){
							for(int m=0;m<=a[5]&&t>=5*m+i+j*2+k*3+l*4;m++){
								for(int n=0;n<=a[6]&&t>=n*6+i+j*2+k*3+l*4+m*5;n++){
									if(i+j*2+k*3+l*4+m*5+n*6==t){
										fflag=true;
										break;
									}
								}if(fflag==true)break;
							}if(fflag==true)break;
						}if(fflag==true)break;
					}if(fflag==true)break;
				}if(fflag==true)break;
			}if(fflag==true)cout<<"Can be divided.\n\n";
			else cout<<"Can't be divided.\n\n";
		}
	}
	return 0;
}

    别抄,是错的     

 算下来,时间复杂度约等于O(n^6)!!

但也顺走了90pts。

AC分析:

   煎蛋    的多重背包

二维,一维存a[i],二维存max

AC码:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5;
int n,q,x,dp[10][2*N],a[10];
int main(){
	//freopen("candy.in","r",stdin);
	//freopen("candy.out","w",stdout);
	int cnt=0;
	while(++cnt){
		int m=0;
		for(int i=1;i<=6;i++){
			cin>>a[i];
			m+=a[i]*i;
		}if(!m)break;
		dp[0][0]=1;
		for(int i=1;i<=6;i++){
			for(int k=0;k<=a[i];k++){
				for(int j=k*i;j<=m/2+1;j++){
					dp[i][j]=dp[i][j] | dp[i-1][j-k*i];
				}
			}
		}cout<<"Collection #"<<cnt<<":\n";
		if(m%2==0&&dp[6][m/2]==1)cout<<"Can be divided.\n\n";
		else cout<<"Can't be divided.\n\n";
	}
	return 0;
}

AKIOI

好的,以下是一个简单的四旋翼无人机定点控制的C++代码示例: ```c++ #include <iostream> #include <cmath> using namespace std; // 定义四旋翼无人机的状态变量 double x, y, z; // 位置坐标 double vx, vy, vz; // 速度 double ax, ay, az; // 加速度 double roll, pitch, yaw; // 姿态角 double p, q, r; // 角速度 // 定义定点控制参数 double kpx, kpy, kpz; // 比例控制参数 double kdx, kdy, kdz; // 微分控制参数 // 定义目标位置 double target_x, target_y, target_z; // 定义控制输入 double u1, u2, u3, u4; // 计算控制输入 void computeControlInput() { double err_x = target_x - x; // 位置误差 double err_y = target_y - y; double err_z = target_z - z; double err_vx = 0 - vx; // 速度误差 double err_vy = 0 - vy; double err_vz = 0 - vz; // 计算控制输入 u1 = kpx * err_x + kdx * err_vx; u2 = kpy * err_y + kdy * err_vy; u3 = kpz * err_z + kdz * err_vz; u4 = 0; // 四旋翼无人机定点控制中,不需要控制偏航角 // 限制控制输入范围 u1 = max(u1, 0.0); u2 = max(u2, 0.0); u3 = max(u3, 0.0); u4 = max(u4, 0.0); u1 = min(u1, 1.0); u2 = min(u2, 1.0); u3 = min(u3, 1.0); u4 = min(u4, 1.0); } // 更新四旋翼无人机状态 void updateQuadrotorState(double dt) { // 根据控制输入计算加速度和角加速度 double g = 9.8; // 重力加速度 ax = (u1 + u2 + u3) * sin(pitch) / cos(roll) - g * sin(pitch); ay = (u1 + u2 + u3) * sin(roll) / cos(pitch) - g * sin(roll); az = u1 + u2 + u3 + u4 - g; // 根据加速度和角速度计算速度和位置 vx += ax * dt; vy += ay * dt; vz += az * dt; x += vx * dt; y += vy * dt; z += vz * dt; // 根据控制输入计算姿态角和角速度 double l = 0.25; // 旋翼到质心的距离 double mx = u1 - u2; // 滚转控制输入 double my = u3 - u4; // 俯仰控制输入 double mz = (u2 + u4 - u1 - u3) / 2; // 偏航控制输入 roll = atan2(my, sqrt(pow(mx, 2) + pow(mz, 2))); pitch = atan2(-mx, sqrt(pow(my, 2) + pow(mz, 2))); r = mz / l; // 根据姿态角和角速度计算角加速度 double Ixx = 0.01; // 滚转惯量 double Iyy = 0.01; // 俯仰惯量 double Izz = 0.02; // 偏航惯量 double p_err = 0 - p; // 角速度误差 double q_err = 0 - q; double r_err = 0 - r; double Mx = Ixx * (kpx * p_err - kdx * p) + (Iyy - Izz) * q * r; double My = Iyy * (kpy * q_err - kdy * q) + (Izz - Ixx) * p * r; double Mz = Izz * (kpz * r_err - kdz * r) + (Ixx - Iyy) * p * q; // 根据角加速度计算角速度 p += Mx / Ixx * dt; q += My / Iyy * dt; r += Mz / Izz * dt; // 将角速度限制在一定范围内 p = max(p, -2.0); q = max(q, -2.0); r = max(r, -2.0); p = min(p, 2.0); q = min(q, 2.0); r = min(r, 2.0); } int main() { // 初始化状态变量和控制参数 x = 0; y = 0; z = 0; vx = 0; vy = 0; vz = 0; ax = 0; ay = 0; az = 0; roll = 0; pitch = 0; yaw = 0; p = 0; q = 0; r = 0; kpx = 0.1; kpy = 0.1; kpz = 0.1; kdx = 0.01; kdy = 0.01; kdz = 0.01; // 设定目标位置 target_x = 1; target_y = 1; target_z = 1; // 模拟飞行过程 double dt = 0.01; for (int i = 0; i < 1000; i++) { computeControlInput(); updateQuadrotorState(dt); cout << "x: " << x << ", y: " << y << ", z: " << z << endl; } return 0; } ``` 该代码实现了一个简单的四旋翼无人机定点控制程序。其中,控制输入为四个旋翼的转速,由比例控制参数和微分控制参数计算得出。同时,根据控制输入和四旋翼的物理模型,计算出加速度、角加速度、姿态角、角速度等状态变量,并将其用于更新无人机状态。在该代码中,我们假设无人机只需要在三个自由度上控制,因此不需要控制偏航角。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值