1.比赛情况
T1 下棋 | T2 汪洋 | T3 | T4 平分糖果 | 总分 |
100pts(AC) | 0pts(WA) | 0pts(NP) | 90pts(TLE) | 190 |
赛后AK
2.赛中概况
第一题难度跟昨天差不多,用的是结构体排序,15分钟就A了,比较顺利。
然后做的第四题,第四题开始没大仔细读,编完后调试调出了十几个bug,改完之后又发现思路不对,又重新写(其实没啥难度,主要是思维),然后耗时30分钟左右编完(蒟蒻的自己)。
第二题也是非常的 水 ,我用的dfs 写了一大串最后只能输出0。正解是用前缀和做的,代码挺容易理解的。第三题直接没思路,没怎么做。
3.题目分析
T1 下棋
赛中情况:AC
1.1 问题描述
Meowowco 最近沉迷下棋。
众所周知,棋盘上一局有 𝑛n 个玩家一起游戏。
我们的棋子称为”英雄”,英雄分为11、22、33星。11 个 33 星英雄可以由 33 个 22 星英雄合成,11 个 22 星英雄可以由 33 个 11 星英雄合成。
现在给出每名玩家的英雄阵容,我们定义阵容强度为 18𝑥+3𝑦+𝑧18x+3y+z,其中 𝑥x 为 33 星英雄个数,𝑦y 为两星英雄个数,𝑧z 为一星英雄个数,其中可以用低星英雄合成高星英雄后再计算阵容强度。
根据玩家的阵容强度,将玩家序号进行排序,并按阵容强度从大到小的顺序输出玩家的序号(若阵容强度相同,则把玩家序号(第𝑖i个输入的玩家序号为𝑖i)小的排在前面)。
1.2 输入格式
从文件
chess.in
中读取数据。第一行输入一个整数 𝑛n (1≤𝑛≤1000001≤n≤100000),表示有𝑛n名玩家参加游戏。
接下来𝑛n行,每行包含三个整数,代表玩家 𝑖i 的一星、二星、三星英雄的数量。
1.3 输出格式
输出到文件
chess.out
中。将玩家序号进行排序,并按阵容强度顺序输出玩家的序号(若阵容强度相同,则按玩家序号排序)。
1.4 输入样例1
9
2 3 1
1 3 3
0 0 4
1 4 3
4 1 4
1 4 1
0 1 4
0 1 4
2 3 2
1.5 输出样例1
5 4 7 8 2 3 9 6 1
1.6 输入样例2
2
1 2 0
1 2 2
1.7 输出样例2
2 1
1.8 数据描述
保证所有数据点均满足 1≤𝑛≤105,0≤𝑥,𝑦,𝑧≤109。
分析
求出转化后的阵容强度和序号即可(三年OI一场空,不开long long见祖宗)
AC码 :
#include<bits/stdc++.h>
using namespace std;
const int N=500500;
struct qq{
long long x,y,z;
long long id,sum;
}a[N];
bool cmp(qq f,qq l){
if(f.sum!=l.sum){
return f.sum>l.sum;
}else{
return f.id<l.id;
}
}
int main(){
freopen("chess.in","r",stdin);
freopen("chess.out","w",stdout);
long long n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].z>>a[i].y>>a[i].x;
if(a[i].z>=3){
a[i].y+=(a[i].z/3);
a[i].z%=3;
}if(a[i].y>=3){
a[i].x+=(a[i].y/3);
a[i].y%=3;
}a[i].id=i;
a[i].sum=a[i].x*18+a[i].y*3+a[i].z*1;
}sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++){
cout<<a[i].id<<" ";
}
return 0;
}
T2 汪洋
2.1 问题描述
Meowowco 连夜坐飞机去参加上海国家会展中心的 BilibiliWorld 2023,可是到现场时,已经是一片汪洋。。。
就算是这样,Meowowco 也不算白来一趟,因为场馆里还有许多可爱的 coser,她可以和这些 coser 一起合影,然后发说说羡慕她那可怜的队友。
场馆可以看成一张由 n×nn×n 个格子构成的矩阵。场馆内的格子可能被水淹没,Meowowco 趟水走过去可能会影响心情,因此这些格子上的值为 负数。但是另外的一些格子上站着可爱的 coser,如果 Meowowco 可以与那些 coser 合影,那么她就会变得开心,因此这些格子的值为 正数。
Meowowco 最开始的心情为 100100 点,她在逛 BW 的过程中:
如果走到值为正数的格子,说明可以和可爱的 coser 拍照,因此会增加心情。
如果走到值为负数的格子,说明 Meowowco 需要趟水,因此心情值会下降。
Meowowco 从 (1,1)(1,1) 点向右出发,即朝 (1,2)(1,2) 点出发,她每次移动只能移动到 一个相邻的格子,并且她需要按照下面的路线逛一圈:
沿着上一步的方向继续移动
进行顺时针 9090 度转向,(注意不可以在同一个格子内连续转向)
不再逛那些逛过的格子(除了起点)
其中转向指的是:如果上一步向右走,那么转向之后则为向下走;如果上一步向左走,那么转向之后则为向上走……
那么逛完 BW 之后,肯定是要从 (1,1)(1,1) 点离开然后回家的,那么问题来了,Meowowco 离开时心情值最大是多少。
2.2 输入格式
从文件
BigWater.in
中读取数据。第一行输入一个整数 nn,表示地图的大小。
第二到 N+1N+1 行,每行包含 nn 个整数 aijaij,表示每个格子的值。
保证 (1,1)(1,1) 点为 00。
2.3 输出格式
输出到文件
BigWater.out
中。输出一个整数,表示 Meowowco 最大的心情值。
2.4 输入样例1
5
0 -3 8 -2 3
3 -1 -3 -10 -6
9 -9 -6 10 -7
-2 -4 -9 6 -10
-1 8 -7 10 -5
2.5 输出样例1
129
2.6 输入样例2
5
0 5 2 2 -7
10 7 -5 7 1
4 -1 -5 4 -6
3 -2 3 4 0
-6 -1 -8 9 -6
2.7 输出样例2
142
2.8 数据描述
保证所有数据点均满足 1≤n≤1031≤n≤103,∣ai∣≤100∣ai∣≤100。
分析:
利用前缀和的方法,在输入过程中 把地图分成一个个矩形,计算矩形内的数字总和(sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j])。分别枚举轮廓上的数字总和(sum[i][j]-sum[i-1][j-1]+sum[1][j]+sum[i][1]-sum[1][1]-a[1][j]-a[i][1]),选出最大值。
AC码:
#include<bits/stdc++.h>
using namespace std;
int sum[1019][1045]={0},a[1045][1019];
int main(){
int n,maxx=0;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>a[i][j];
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
}for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
maxx=max(maxx,sum[i][j]-sum[i-1][j-1]+sum[1][j]+sum[i][1]-sum[1][1]-a[1][j]-a[i][1]);
}
}cout<<100+maxx;
return 0;
}
T3 删数
赛中情况 WA 0pts
3.1 问题描述
有一个集合,初始状态里面有数字 11、22、33、44、55、……、11451419198101145141919810,你可以理解为很多正整数。
现在给你一个长度为 nn 数组 a(1≤ai≤109)a(1≤ai≤109),每次操作将当前集合中第 a1a1 小、第 a2a2 小、……、第 anan 小的数同时移除。
现在有 qq 次询问,每次询问包含一个整数 xx,查询从初始状态到删除 xx 需要操作多少次。若无法删除,输出
0
。3.2 输入格式
从文件
delnum.in
中读取数据。第一行包含两个正整数 n(1≤n≤105)n(1≤n≤105),表示数组大小。
接下来一行包含 nn 个正整数 a1a1,a2a2,……,anan,含义如题目描述所述。
接下来一行包含一个正整数 qq,表示查询次数。
接下来 qq 行,每行包含一个正整数 xx。
数据保证 a1<a2<.....<an≤109a1<a2<.....<an≤109
3.3 输出格式
输出到文件
delnum.out
中。对于每次询问,输出占一行,包含一个整数,表示删除 xx 需要操作多少次。若无法删除,输出
0
。3.4 输入样例
5
1 2 3 4 5
1
100
3.5 输出样例
20
3.6 输入样例
5
1 3 9 14 20
5
114
514
1919
810
233
3.7 输出样例
27
107
388
159
45
3.8 数据描述
保证所有数据点均满足 1≤n≤1051≤n≤105,1≤ai≤1091≤ai≤109,1≤q≤501≤q≤50,1≤x≤1091≤x≤109。
简单分析 :
简简单单 思维题。
找找规律就能A。
AC码:
#include<bits/stdc++.h>
using namespace std;
int n,q,a[114514],x;
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}cin>>q;
while(q--){
cin>>x;
int sum=0,f=0,ans=0;
for(int i=n;i>0;i--){
if(a[i]<=x){
ans+=(x-a[i])/i;
x=a[i]+(x-a[i])%i;
if(x>a[i]){
x-=i;
ans++;
}
}if(x==a[i]){
cout<<ans+1<<endl;
f=1;
break;
}
}if(!f)cout<<"0\n";
}
return 0;
}
T4 平分糖果
4.1 问题描述
小可的妈妈给了小可很多的糖果,已经糖果都有美味程度,美味程度用1~6的整数表示。
有一天达达来小可家做客,小可要把糖果分给达达,现在已知了美味程度为 i 的糖果有 a[i] 个,请问小可能不能把糖果平分成美味程度之和相同的两部分。
4.2 输入格式
多组输入,每行输入6个数字,表示美味程度为 i 的糖果有 a[i] 个。
以输入一行6个0作为终止条件。
4.3 输出格式
对于每组输入,第一行输出为:
Collection #k:
,k为第几组输入。第二行输出为:如果可以平均分,则输出
Can be divided.
,否则输出Can't be divided.
。4.4 输入样例
1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0
4.5 输出样例
Collection #1:
Can't be divided.
Collection #2:
Can be divided.
4.6 数据描述
20%的数据:糖果总数不超过100
100%的数据:糖果总数不超过 20000
分析:
确定平分a[1]的值求2,3,4,5,6。满足==t表示能平分。
于是就有了:
#include<bits/stdc++.h>
using namespace std;
const int N=100500;
int main(){
freopen("candy.in","r",stdin);
freopen("candy.out","w",stdout);
int p=0;
while(++p){
int a[11];
int sum=0,t;
bool flag=true,fflag=false;
for(int i=1;i<=6;i++){
cin>>a[i];
sum+=(a[i]*i);
if(a[i]!=0)flag=false;
}if(flag==true)break;
cout<<"Collection #"<<p<<":"<<endl;
if(sum%2)cout<<"Can't be divided.\n\n";
else{
t=sum/2;
for(int i=0;i<=a[1]&&t>=i;i++){
for(int j=0;j<=a[2]&&t>=2*j+i;j++){
for(int k=0;k<=a[3]&&t>=3*k+i+j*2;k++){
for(int l=0;l<=a[4]&&t>=4*l+i+j*2+k*3;l++){
for(int m=0;m<=a[5]&&t>=5*m+i+j*2+k*3+l*4;m++){
for(int n=0;n<=a[6]&&t>=n*6+i+j*2+k*3+l*4+m*5;n++){
if(i+j*2+k*3+l*4+m*5+n*6==t){
fflag=true;
break;
}
}if(fflag==true)break;
}if(fflag==true)break;
}if(fflag==true)break;
}if(fflag==true)break;
}if(fflag==true)break;
}if(fflag==true)cout<<"Can be divided.\n\n";
else cout<<"Can't be divided.\n\n";
}
}
return 0;
}
别抄,是错的
算下来,时间复杂度约等于O(n^6)!!
但也顺走了90pts。
AC分析:
煎蛋 的多重背包
二维,一维存a[i],二维存max
AC码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5;
int n,q,x,dp[10][2*N],a[10];
int main(){
//freopen("candy.in","r",stdin);
//freopen("candy.out","w",stdout);
int cnt=0;
while(++cnt){
int m=0;
for(int i=1;i<=6;i++){
cin>>a[i];
m+=a[i]*i;
}if(!m)break;
dp[0][0]=1;
for(int i=1;i<=6;i++){
for(int k=0;k<=a[i];k++){
for(int j=k*i;j<=m/2+1;j++){
dp[i][j]=dp[i][j] | dp[i-1][j-k*i];
}
}
}cout<<"Collection #"<<cnt<<":\n";
if(m%2==0&&dp[6][m/2]==1)cout<<"Can be divided.\n\n";
else cout<<"Can't be divided.\n\n";
}
return 0;
}