时间序列的预处理——纯随机性检验的R语言实现(二)

金融时间序列 专栏收录该内容
6 篇文章 0 订阅

本文为本科课程整理
五一应该会做一个大概的纸质版的笔记整理。

#纯随机性检验
white_noise <- rnorm(500)
white_noise2 <- rnorm(500,mean = 2,sd = 0.2)
white_noise <- ts(white_noise)
plot(white_noise)
acf(white_noise,ylim=c(-1,1))

#LBQ检验
LBQ <- Box.test(white_noise,lag = 6,type = "Ljung-Box")
help(Box.test)
LBQ$p.value

#for循环
for (i in 1:2) print(Box.test(white_noise,lag = 6*i))

LBQ_p <- 1:24
for(i in 1:24){
  LBQ <- Box.test(white_noise,lag = 6*i)
  LBQ_p[i]<- LBQ$p.value
}

c<-read.csv()#教材40页
prop <- ts(c$prop,start = 1950)
plot(prop)
acf(prop,ylim=c(-1,1))

for (i in 1:2) print(Box.test(prop,lag=6*i))

纯随机性检验

#纯随机性检验
white_noise <- rnorm(500)
white_noise2 <- rnorm(500,mean = 2,sd = 0.2)
white_noise <- ts(white_noise)
plot(white_noise)
acf(white_noise,ylim=c(-1,1))
  • rnorm():可以输入均值和标准差。不给的话默认为标准正态分布。
    在这里插入图片描述

在这里插入图片描述

LBQ检验——Box.text()

#LBQ检验
LBQ <- Box.test(white_noise,lag = 6,type = "Ljung-Box")
help(Box.test)
LBQ$p.value
  • Box.test:
    • lag:检验的滞后阶数
    • Q检验分为BPQ和LBQ检验。 LBQ检验效果更好一些。 type给一个LBQ检验来运行。
      在这里插入图片描述

在拿到一个时间序列时,先把时序图画出来,看是不是平稳的,然后对其进行平稳性检验。如果不是平稳的,就要想办法把它化成平稳的时间序列。之后需要对其进行LBQ检验。
-为什么进行纯随机性检验?
-如果它是白噪声序列,就没必要用统计的方法进行分析了。


#for循环
for (i in 1:2) print(Box.test(white_noise,lag = 6*i))

在这里插入图片描述


LBQ_p <- 1:24
for(i in 1:24){
  LBQ <- Box.test(white_noise,lag = i)
  LBQ_p[i]<- LBQ$p.value
}

在这里插入图片描述

教材40页例子

c<-read.csv()#教材40页
prop <- ts(c$prop,start = 1950)
plot(prop)
acf(prop,ylim=c(-1,1))

for (i in 1:2) print(Box.test(prop,lag=6*i))

在这里插入图片描述
没有明显趋势,还是要用ACF检验

在这里插入图片描述
通过自相关看到前面几阶显著,后面就衰减了
然后进行LBQ检验,只检验了6和12

在这里插入图片描述
发现p值都小于0.05,说明存在自相关情况,不是白噪声序列。

  • 1
    点赞
  • 1
    评论
  • 25
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值