30.IEEE 754单精度浮点数加减运算的对阶过程中,需要计算两个阶码Er和Ey之差的补码[ΔE]补。假设两个浮点数分别记为[X]浮和[Y]浮,[Ex]移、[Ey]移和[ΔE]补的最高有效位分别记为Exs ,Eys 和 Ebs ,当[ΔE]补发生溢出时,正确的处理方式是()。
A.中止当前程序的执行,调出相应的“溢出”异常处理程序执行
B.当Exs 为1时置最终结果为[X]浮;当Exs 为0时置最终结果为[Y]浮
C.当Eys 为1时置最终结果为[X]浮;当Eys 为0时置最终结果为[Y]浮
D.当Ebs 为0时置最终结果为[X]浮;当Ebs 为1时置最终结果为[Y]浮
答案:B
分情况讨论,ΔE溢出有两种情况:
- 1.ΔE>25
ΔE=Ex-Ey 想要大于127,必定Ex大于Ey(Exs=1),大数吃小数,最后剩下x - 2.ΔE<-25
ΔE=Ex-Ey 想要小于-126,必定Ey大于Ex(Eys=1/Exs=0),大数吃小数,最后剩下y
所以选B
补充:
IEE754标准中,还规定阶码全为0或全1时,不做指数,另有他用,在单精度浮点数中,最大阶码的真值为127,最小阶码的真值为-126