文章目录
6.1 图の基本概念
6.1.1 图の定义
- 图G:顶点集V和边集E组成,G =(V,E)
- 注意:
(1)性表可以是空表,树可以是空树,图不可以是空图
(2)图中不能一个顶点也没有,顶点集V一定非空,边集E可以为空
6.1.2 图逻辑结构の应用
- 交通网
- 好友关系(朋友网)
- 微博粉丝关系
6.1.3 图の基本概念及术语
1. 有向图 & 无向图
- (圆括号)表示边,<尖括号>表示弧
2. 简单图、多重图
4. 完全图(简单完全图)
5. 子图
6. 连通、连通图和连通分量
7. 强连通图、强连通分量
8. 生成树、生成森林
9. 定点の度、入度、出度
(1)有向图:
(2)无向图:
- 度:
- 入度:以顶点v为重点的有向边的数目,ID(v)
- 出度:以顶点v为七点的有向边的数目,OD(v)
10. 边の权、网
11. 稠密图、稀疏图
12. 路径、路径长度、回路
13. 简单路径、简单回路
14. 距离
15. 有向树
6.2 图の存储及基本操作
6.2.1 邻接矩阵法
6.2.2 邻接表法
6.2.3 十字链表
6.2.4 邻接多重表
6.2.5 图の基本操作
6.3 图の遍历
6.3.1 广度优先搜索
- BFS算法の性能分析
- BFS算法求解单源最短路径问题
- 广度优先生成树
6.3.2 深度优先搜索
- DFS算法の性能分析
- 深度优先の生成树和生成森林
6.3.3 图の遍历与图の连通性
6.4 图の应用
6.4.1 最小生成树
- Prim算法
- Kruskal算法
6.4.2 最短路径
- Dijkstra算法求单源最短路径问题
- Floyd算法求各顶点之间最短路径问题
6.4.3 有向无环图描述表达式
6.4.4 拓扑排序
6.4.5 关键路径
- 事件Vkの最早发生时间ve(k)
- 事件Vkの最迟发生时间vl(k)
- 活动Aiの最早开始时间e(i)
- 活动Aiの最迟开始时间 l(i)
- 一个活动Ai的最迟开始时间l(i)和其最早开始时间e(i)的差额 d(i) = l(i) - e(i)