【数据结构】第六章:图

6.1 图の基本概念

6.1.1 图の定义

  • 图G:顶点集V和边集E组成,G =(V,E)
  • 注意:
    (1)性表可以是空表,树可以是空树,图不可以是空图
    (2)图中不能一个顶点也没有,顶点集V一定非空,边集E可以为空
    在这里插入图片描述

6.1.2 图逻辑结构の应用

  • 交通网
  • 好友关系(朋友网)
  • 微博粉丝关系

6.1.3 图の基本概念及术语

1. 有向图 & 无向图

  • (圆括号)表示边,<尖括号>表示弧
    在这里插入图片描述

2. 简单图、多重图

在这里插入图片描述

4. 完全图(简单完全图)

5. 子图

6. 连通、连通图和连通分量

7. 强连通图、强连通分量

8. 生成树、生成森林

9. 定点の度、入度、出度
(1)有向图:

(2)无向图:

  • 度:
  • 入度:以顶点v为重点的有向边的数目,ID(v)
  • 出度:以顶点v为七点的有向边的数目,OD(v)
    在这里插入图片描述

10. 边の权、网

11. 稠密图、稀疏图

12. 路径、路径长度、回路

13. 简单路径、简单回路

14. 距离

15. 有向树

6.2 图の存储及基本操作

6.2.1 邻接矩阵法

6.2.2 邻接表法

6.2.3 十字链表

6.2.4 邻接多重表

6.2.5 图の基本操作

6.3 图の遍历

6.3.1 广度优先搜索

  1. BFS算法の性能分析
  2. BFS算法求解单源最短路径问题
  3. 广度优先生成树

6.3.2 深度优先搜索

  1. DFS算法の性能分析
  2. 深度优先の生成树和生成森林

6.3.3 图の遍历与图の连通性

6.4 图の应用

6.4.1 最小生成树

  1. Prim算法
  2. Kruskal算法

6.4.2 最短路径

  1. Dijkstra算法求单源最短路径问题
  2. Floyd算法求各顶点之间最短路径问题

6.4.3 有向无环图描述表达式

6.4.4 拓扑排序

6.4.5 关键路径

  1. 事件Vkの最早发生时间ve(k)
  2. 事件Vkの最迟发生时间vl(k)
  3. 活动Aiの最早开始时间e(i)
  4. 活动Aiの最迟开始时间 l(i)
  5. 一个活动Ai的最迟开始时间l(i)和其最早开始时间e(i)的差额 d(i) = l(i) - e(i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值