BZOJ 1009: [HNOI2008]GT考试

39 篇文章 0 订阅
1 篇文章 0 订阅

题目在这里呀!

一道KMP的好题啊qaq
最近做题效率比较低,所以这题也花了我一个多小时时间…我旁边的大佬秒的题啊!

题意

题目写得很清楚了就不解释了qwq

题解

KMP得到失配节点然后做dp?
可是注意到n很大,dp显然不可以。那就是矩阵乘法了啊(挺容易想到的吧
然后我就在转矩阵上傻了…
现在我们就是要将答案矩阵f[i][]转移到f[i+1][]。
那么前i位匹配了不吉利串的j位,对于第i+1位字符,有两种可能,一种是成功匹配,那么

fi+1,j+1+=fi,j

一种就是失配了,那么对应的失配指针设为k,则
fi+1,k+1+=fi,j

那么将j转移到k+1,也就对应着在matrix[j][k+1]上加1.
剩下来就是矩阵快速幂了,但后来我又想不通结果该怎么求,其实很简单
在i=0时的矩阵只有f[0][0]=1,那么根据矩阵乘法,设系数矩阵为P,最后我们要求的就是P^n的第0列的和(下标从0开始)

所以…就这样了啊qwq

//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int n,m,mod,k,sum,tmp[100][100],ans[100][100],a[100][100],next[100];
char st[1000];

inline void mul()
{
    for(int i=0;i<m;i++)
        for(int j=0;j<m;j++) tmp[i][j]=0;
    for(int k=0;k<m;k++)
        for(int i=0;i<m;i++)
            for(int j=0;j<m;j++) tmp[i][j]=(tmp[i][j]+ans[i][k]*a[k][j]) % mod;
    for(int i=0;i<m;i++)
        for(int j=0;j<m;j++) ans[i][j]=tmp[i][j];
}

inline void matrix()
{
    for(int i=0;i<m;i++)
        for(int j=0;j<m;j++) tmp[i][j]=0;
    for(int k=0;k<m;k++)
        for(int i=0;i<m;i++)
            for(int j=0;j<m;j++) tmp[i][j]=(tmp[i][j]+a[i][k]*a[k][j]) % mod;
    for(int i=0;i<m;i++)
        for(int j=0;j<m;j++) a[i][j]=tmp[i][j];
}

int main()
{
    scanf("%d%d%d",&n,&m,&mod);
    scanf("%s",st+1);
    next[1]=0;
    k=0;
    for(int i=2;i<=m;i++){
        while(k>0 && st[i] != st[k+1]) k=next[k];
        if(st[i]==st[k+1]) k++;
        next[i]=k;
    }
    for(int i=0;i<m;i++)
        for(int j=0;j<=9;j++){
            k=i;
            while(k>0 && st[k+1]-'0' != j) k=next[k];
            if(st[k+1]-'0'==j) k++;
            if(k<m) a[k][i]=(a[k][i]+1) % mod;
        }
    for(int i=0;i<m;i++) ans[i][i]=1;
    while(n){
        if(n & 1) mul();
        matrix();
        n>>=1;
    }
    for(int i=0;i<m;i++) sum=(sum+ans[i][0]) % mod;
    printf("%d\n",sum);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值