题目描述
1 龙龙
Time Limit:1000MS Memory Limit:1000K
题型: 编程题 语言: 无限制
描述
在比赛的时候,1Y(1 次AC)是很值得高兴的事情。但很多大牛总会因为很弱智的错误先WA 一次,再AC。
而很多时候,这点罚时的差距使得他们与金牌无缘。弱智错误系列中最显著的就是忘记加龙龙。
龙龙外国人叫它作long long,表示64位整数,输入与输出64位整数则可以使用例如
scanf("%lld", &a)与printf("%lld", a)的形式完成。很多图论和动态规划的题目中,
虽然题目说最后输出的答案是32 位的整数,但中间计算的过程有时会超过int,这时我们就要使用龙龙了。
可惜的是,很多同学刚开始学写程序都是用VC的,在VC上是无法使用long long的,我们要用__int64
代替,输入与输出64位整数则可以使用例如scanf("%I64d", &a)与printf("%I64d", a)的形式完成。
但是提交上OJ 的时候,如果使用GCC或G++,都只支持long long,我们在提交时又得按照上边的改回来(的确挺麻烦,窘)。
为了让知道龙龙的同学们记得使用龙龙,不知道的学习使用龙龙,下边有个很简单的函数,希望大家
求出它的返回值:
long long H(int n){
long long res = 0;
int i;
for(i = 1; i <= n; i=i+1 ){
res = (res + n/i);
}
return res;
}
不过直接使用这个函数是会超时的,必须改造这个函数,当然这一定难不到未来的编程高手–你
输入格式
第一行是数字T(T<=1021)表示case数,接下来T 行,每行一个整数n,n是一个32 位整数(保证可以由int 表示)。
输出格式
函数返回值。
输入样例
2
5
10
输出样例
10
27
提示
作者 admin
这题的解法
这道题目无脑暴力,题目说了是会超时的。所以这题我们不能无脑暴力,必须优化暴力过程。那么怎么优化呢?
通过列举题目所给样例,可以发现,枚举过程中到了一定程度的时候会有很多值相同的枚举情况,这种情况是可以优化的。
首先:我们假设Q=sqrt(n),当我们枚举n对应的这种情况时,我们先枚举i<=Q的情况,这种情况就直接枚举数量,用ans记录累加的数值。
然后再枚举i>Q的情况,那么这种情况怎么枚举才能使得程序得到优化呢?首先我们设,X=n/Q;我们知道n/(n/(Q-1))-n/(n/Q)是两个数之间的个数差。那么(n/(n/(Q-1))-n/(n/Q))*n/Q就是这之间的值的总和,我们只需要枚举1-X范围内的情况即可,每次都调用上述公式求解。
代码如下:
#include<stdio.h>
#include<math.h>
#define ll long long
long long func(int n)
{
long long ans=0;
if(n<1) return 0;
int q=sqrt(n);
for(int i=1;i<=q;i++)
ans+=n/i;
q=n/q;
int temp=n/q;
q--;
for(;q>0;q--)
{
ans+=(n/q-temp)*q;
temp=n/q;
}
return ans;
}
int main()
{
int a;
int n;
scanf("%d", &n);
while(n--)
{
scanf("%d", &a);
printf("%lld\n", func(a));
}
}