笔记连接:训练方法总结–持续看能力更新完善
以下大概是要更新的东西和框架,现在就是开一个坑。等我变强了一点,能够说清楚具体的东西就慢慢完善细化内容
卷积神经网络常用训练方法框架图----源于YOLOv4原文中截图
- 激活函数
1.1 ReLU
是什么:
特点:
1.2 leaky-ReLU
是什么:
特点:
1.3 parametric-ReLU
是什么:
特点:
1.4 ReLU6
是什么:
特点:
1.5 SELU
是什么:
特点:
1.6 Swish
是什么:
特点:
1.7 Mish
是什么:
特点: - 边界框回归损失
2.1 MSE
是什么:
特点:
2.2 IoU
是什么:
特点:
2.3 GIoU
是什么:
特点:
2.4 CIoU
是什么:
特点:
2.5 DIoU
是什么:
特点: - 数据增强
3.1 CutOut
是什么:
特点:
3.2 MixUp
是什么:
特点:
3.3 CutMix
是什么:
特点: - 正则化
4.1 DropOut
是什么:
特点:
4.2 DropPath
是什么:
特点:
4.3 Spatial DropOut
是什么:
特点:
4.4 DropBlock
是什么:
特点: - 归一化
5.1 Batch Normalization (BN)
是什么:
特点:
5.2 Cross-GPU Batch Normalization (CGBN or SyncBN)
是什么:
特点:
5.3 Filter Response Normalization (FRN)
是什么:
特点:
5.4 Cross-Iteration Batch Normalization (CBN)
是什么:
特点: - 残存连接
6.1 Residual connections
是什么:
特点:
6.2 Weighted
是什么:
特点:
6.3 residual connections
是什么:
特点:
6.4 Multi-input weighted residual
connections
是什么:
特点:
6.5 Cross stage partial connections (CSP)
是什么:
特点: