【看看这长尾学习】解耦训练 Balanced group Softmax

本文介绍了一种名为BAGS的模型,用于解决对象检测任务中类别不平衡的问题。通过将类别分组并引入平衡策略,该模型能有效提升对长尾类别的建模能力,同时避免过度采样。文章详细阐述了GroupSoftmax的应用、分组策略以及其在训练和测试阶段的实施方法。
摘要由CSDN通过智能技术生成

04 Overcoming classifier imbalance for long-tail object detection with balanced group softmax

论文观点和表现:
  • 现有检测方法在数据集严重倾斜时不能对极少数类进行建模,这导致分类器在参数量级上不平衡。并且长尾分类模型并不能直接应用于检测框架。

  • 本文提出了一个新的平衡组(BAGS)模型来平衡检测框架内的分类器,能够隐式的调制尾部和头部类别的训练过程并且确保训练充分(没有对尾部实例进行额外的采样)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kwlpq1cX-1637840547331)(C:\Users\13576\AppData\Roaming\Typora\typora-user-images\image-20211125152336998.png)]
    在这里插入图片描述

实验原理:
  • 网络结构:

在这里插入图片描述

  • Group softmax

    • 划分一系类的平衡组,每个Group中各类别实例数目相当。

      • C C C 个类别分为 N N N 个Groups, 分配的依据是每个类的实际实例数目。

      • S n l ≤ N ( j ) < S n h , n > 0 {S_{n}^{l} \le N(j)<S_{n}^{h}, n>0} SnlN(j)<Snh,n>0

        • 具体含义见下图

        [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Posyk1q6-1637840547336)(C:\Users\13576\AppData\Roaming\Typora\typora-user-images\image-20211125163654380.png)]

  • 给每个Group添加Others

    • Others包含除了当前Group中类别的其他类别和背景
  • 添加第 g 0 {g_{0}} g0 组 ,前后背景组

    • 在对 g 1 . . . . . . . g n {g_{1}.......g_{n}} g1.......gn 进行预测之前,先进行 g 0 {g_{0}} g0 再与 g 1 . . . . . . . g n {g_{1}.......g_{n}} g1.......gn 的结果相乘。
思考与带论证实验:
  • 分组进行思路很好理解,但是具体实施呢?如
    • 如何训练的时候进行分组?
    • 分组后如何使用Softmax进行单独训练
    • 测试时,如何先去判断前后背景概率,再结合各组别综合判断Object的所属类别?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值