04 Overcoming classifier imbalance for long-tail object detection with balanced group softmax
论文观点和表现:
-
现有检测方法在数据集严重倾斜时不能对极少数类进行建模,这导致分类器在参数量级上不平衡。并且长尾分类模型并不能直接应用于检测框架。
-
本文提出了一个新的平衡组(BAGS)模型来平衡检测框架内的分类器,能够隐式的调制尾部和头部类别的训练过程并且确保训练充分(没有对尾部实例进行额外的采样)
实验原理:
- 网络结构:
-
Group softmax
-
划分一系类的平衡组,每个Group中各类别实例数目相当。
-
将 C C C 个类别分为 N N N 个Groups, 分配的依据是每个类的实际实例数目。
-
S n l ≤ N ( j ) < S n h , n > 0 {S_{n}^{l} \le N(j)<S_{n}^{h}, n>0} Snl≤N(j)<Snh,n>0
- 具体含义见下图
-
-
-
给每个Group添加Others
- Others包含除了当前Group中类别的其他类别和背景
-
添加第 g 0 {g_{0}} g0 组 ,前后背景组
- 在对 g 1 . . . . . . . g n {g_{1}.......g_{n}} g1.......gn 进行预测之前,先进行 g 0 {g_{0}} g0 再与 g 1 . . . . . . . g n {g_{1}.......g_{n}} g1.......gn 的结果相乘。
思考与带论证实验:
- 分组进行思路很好理解,但是具体实施呢?如
- 如何训练的时候进行分组?
- 分组后如何使用Softmax进行单独训练
- 测试时,如何先去判断前后背景概率,再结合各组别综合判断Object的所属类别?