LeetCode题解贪心篇(TS版)

解题技巧

贪心算法是一种基于贪心策略的算法,用于解决最优化问题。在贪心算法中,每一步都选择当前看起来最优的选择,而不考虑该选择对以后的步骤的影响。贪心算法通常通过一系列的局部最优选择来达到全局最优解

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

贪心+双指针

iShot_2023-06-28_14.32.06
  • 时间复杂度: O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn),其中 m m m n n n 分别是数组 g g g s s s 的长度。对两个数组排序的时间复杂度是 O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn),遍历数组的时间复杂度是 O ( m + n ) O(m+n) O(m+n),因此总时间复杂度是 O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn)
  • 空间复杂度: O ( l o g m + l o g n ) O(logm+logn) O(logm+logn),其中 m m m n n n 分别是数组 g g g s s s 的长度。空间复杂度主要是排序的额外空间开销。
function findContentChildren(g: number[], s: number[]): number {
    g.sort((a, b) => a - b); // 从小到大排序
    s.sort((a, b) => a - b);
    let si = 0;
    let gi = 0;
    let res = 0;
    while (si < s.length && gi < g.length) {
        if (s[si] >= g[gi]) {
            gi++;
            res++;
        }
        si++;
    }
    return res;
};

376.摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 **摆动序列 。**第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
  • 相反,[1, 4, 7, 2, 5][1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列最长子序列的长度

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

贪心解法一

思路:在遍历数组时,维护两个变量up和down,分别记录到当前位置为止,以上升和以下降结尾的最长摇摆子序列长度。当元素上升时,更新up为down+1;当元素下降时,更新down为up+1。最终结果是max(up, down)。

image.png
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function wiggleMaxLength(nums: number[]): number {
    if (nums.length < 2) { return nums.length };

    let down = 1;
    let up = 1;

    for (let i = 1; i < nums.length; i++) {
        if (nums[i] > nums[i - 1]) { // 上升
            up = down + 1;
        }
        else if (nums[i] < nums[i - 1]) { // 下降
            down = up + 1;
        }
    }
    return Math.max(up, down);
};

贪心解法二

计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡
img
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function wiggleMaxLength(nums: number[]): number {
    if (nums.length < 2) return nums.length;
    let preDiff = 0;
    let curDiff = 0;
    let result = 1;
    for (let i = 0; i < nums.length - 1; i++) {
        curDiff = nums[i+1] - nums[i];
        if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
            result++;
            preDiff = curDiff;
        }
    }
    return result;
};

动态规划

待完善

53.最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

贪心

53.最大子序和

iShot_2023-06-29_11.48.03
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function maxSubArray(nums: number[]): number {
    let res = -Infinity;
    let sum = 0;
    for (let i = 0; i < nums.length; i++) {
        sum += nums[i];
        res = Math.max(sum, res);
        if (sum < 0) sum = 0;
    }
    return res;
};

122.买卖股票的最佳时机Ⅱ

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
		随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
		总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104

贪心

1688091532802 iShot_2023-06-30_10.37.34
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function maxProfit(prices: number[]): number {
    let res = 0;
    for (let i = 1; i < prices.length; i++) {
        const price = prices[i] - prices[i - 1];
        if (price > 0) {
            res += price; // 贪心,只收集每天正利润
        }
    }
    return res;
};

55.跳跃游戏

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

  • 1 <= nums.length <= 3 * 104
  • 0 <= nums[i] <= 105

贪心

img
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function canJump(nums: number[]): boolean {
    let cover = 0;
    for (let i = 0; i <= cover; i++) {
        cover = Math.max(nums[i] + i, cover);
        if (cover >= nums.length - 1) return true;
    }
    return false;
};

45.跳跃游戏Ⅱ

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

贪心

图片.png
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function jump(nums: number[]): number {
    if (nums.length === 1) return 0;
    let ans = 0;
    let start = 0;
    let end = 1;
    while (end < nums.length) {
        let max = 0;
        for (let i = start; i < end; i++) {
            max = Math.max(nums[i] + i, max);
        }
        start = end;
        end = max + 1;
        ans++;
    }
    return ans;
};

1005.K次取反最大化的数组和

给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组

  • 选择某个下标 i 并将 nums[i] 替换为 -nums[i]

重复这个过程恰好 k 次。可以多次选择同一个下标 i

以这种方式修改数组后,返回数组 可能的最大和

示例 1:

输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。

示例 2:

输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。

示例 3:

输入:nums = [2,-3,-1,5,-4], k = 2
输出:13
解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。

提示:

  • 1 <= nums.length <= 104
  • -100 <= nums[i] <= 100
  • 1 <= k <= 104

贪心

思路:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小

  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K–

  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完

  • 第四步:求和

  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)

  • 空间复杂度: O ( 1 ) O(1) O(1)

function largestSumAfterKNegations(nums: number[], k: number): number {
    nums.sort((a, b) => Math.abs(b) - Math.abs(a)); // 按绝对值从大到小排
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] < 0 && k > 0) {
            nums[i] = -nums[i];
            k--;
        }
        if (k === 0) break;
    }
    if (k % 2 === 1) nums[nums.length - 1] *= -1;
    let res = 0;
    for (let num of nums) {
        res += num;
    }
    return res;
};

134.加油站

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gascost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:

  • gas.length == n
  • cost.length == n
  • 1 <= n <= 105
  • 0 <= gas[i], cost[i] <= 104

贪心

无标题.png
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
function canCompleteCircuit(gas: number[], cost: number[]): number {
    let spare = 0;
    let minSpare = Infinity;
    let minIndex = 0;

    for (let i = 0; i < gas.length; i++) {
        spare += gas[i] - cost[i];
        if (spare < minSpare) {
            minSpare = spare;
            minIndex = i + 1;
        }
    }

    return spare < 0 ? -1 : minIndex % gas.length;
};

135.分发糖果

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。

你需要按照以下要求,给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻两个孩子评分更高的孩子会获得更多的糖果。

请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目

示例 1:

输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。

示例 2:

输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。
     第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。

提示:

  • n == ratings.length
  • 1 <= n <= 2 * 104
  • 0 <= ratings[i] <= 2 * 104

贪心

iShot_2023-07-03_12.21.17
  • 时间复杂度: O ( N ) O(N) O(N),遍历两遍数组即可得到结果;
  • 空间复杂度: O ( N ) O(N) O(N),需要借用leftArrrightArr的线性额外空间。
function candy(ratings: number[]): number {
    let leftArr = new Array(ratings.length).fill(1);
    let rightArr = new Array(ratings.length).fill(1);
    for (let i = 1; i < leftArr.length; i++) {
        if (ratings[i] > ratings[i - 1]) {
            leftArr[i] = leftArr[i - 1] + 1;
        }
    }
    let count = leftArr[ratings.length - 1];
    for (let i = rightArr.length - 2; i >= 0; i--) {
        if (ratings[i] > ratings[i + 1]) {
            rightArr[i] = rightArr[i+1] + 1;
        }
        count += Math.max(leftArr[i], rightArr[i]);
    }
    return count;
};

860.柠檬水找零

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。

注意,一开始你手头没有任何零钱。

给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false

示例 1:

输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。

示例 2:

输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。

提示:

  • 1 <= bills.length <= 105
  • bills[i] 不是 5 就是 10 或是 20

贪心

思路:

有如下三种情况:

  • 情况一:账单是5,直接收下。

  • 情况二:账单是10,消耗一个5,增加一个10

  • 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5(贪心,先消耗10和5,不行再消耗3个5)

function lemonadeChange(bills: number[]): boolean {
    let five = 0, ten = 0;
    for (let i = 0; i < bills.length; i++) {
        if (bills[i] === 5) {
            five++;
        } else if (bills[i] === 10) {
            if (five > 0) {
                five--;
                ten++;
            } else {
                return false;
            }
        } else {
            if (five > 0 && ten > 0) {
                five--;
                ten--;
            } else if (five > 2) {
                five -= 3;
            } else {
                return false
            }
        }
    }
    return true;
};

406.根据身高重建队列

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:

输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:

输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:

  • 1 <= people.length <= 2000
  • 0 <= hi <= 106
  • 0 <= ki < people.length
  • 题目数据确保队列可以被重建

排序+贪心

思路:

身高从大到小排列,k从小到大排列。

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

iShot_2023-07-04_10.12.02
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),n 是数组people的长度。我们需要 O ( n l o g n ) O(nlogn) O(nlogn)的时间进行排序,随后需要 O ( n 2 ) O(n^2) O(n2)的时间遍历每一个人并将他们放入队列中。
  • 空间复杂度: O ( l o g n ) O(logn) O(logn)
function reconstructQueue(people: number[][]): number[][] {
    people.sort((a, b) => a[0] === b[0] ? a[1] - b[1] : b[0] - a[0]); // 身高从大到小,k从小到大
    const res: number[][] = [];
    for (let i = 0; i < people.length; i++) {
        res.splice(people[i][1], 0, people[i]);
    }
    return res;
};

452.用最少数量的箭引爆气球

有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] = [xstart, xend] 表示水平直径在 xstartxend之间的气球。你不知道气球的确切 y 坐标。

一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 x``startx``end, 且满足 xstart ≤ x ≤ x``end,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。

给你一个数组 points返回引爆所有气球所必须射出的 最小 弓箭数

示例 1:

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-在x = 6处射出箭,击破气球[2,8]和[1,6]。
-在x = 11处发射箭,击破气球[10,16]和[7,12]。

示例 2:

输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
解释:每个气球需要射出一支箭,总共需要4支箭。

示例 3:

输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
解释:气球可以用2支箭来爆破:
- 在x = 2处发射箭,击破气球[1,2]和[2,3]。
- 在x = 4处射出箭,击破气球[3,4]和[4,5]。

提示:

  • 1 <= points.length <= 105
  • points[i].length == 2
  • -231 <= xstart < xend <= 231 - 1

排序+贪心

局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

452.用最少数量的箭引爆气球
  • 时间复杂度: O ( n l o g n ) O(nlog n) O(nlogn),因为有一个快排
  • 空间复杂度: O ( 1 ) O(1) O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要 O ( n ) O(n) O(n)的栈空间
function findMinArrowShots(points: number[][]): number {
    let res = 0;
    points.sort((a, b) => a[1] - b[1]);
    let curNum = Infinity;
    let i = 0;
    while (i < points.length) {
        if (curNum < points[i][0] || curNum > points[i][1]) {
            curNum = points[i][1]; // 贪心,取最大边界
            res++;
        }
        i++;
    }
    return res;
};

435.无重叠区间

给定一个区间的集合 intervals ,其中 intervals[i] = [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠

示例 1:

输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。

示例 2:

输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

示例 3:

输入: intervals = [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

提示:

  • 1 <= intervals.length <= 105
  • intervals[i].length == 2
  • -5 * 104 <= starti < endi <= 5 * 104

排序+贪心

思路:

  1. 将区间按照结束时间从小到大进行排序。
  2. 初始化一个变量来记录不重叠区间的数量,比如命名为 count,并设置其初始值为1,因为我们总可以选择第一个区间。同时,维护一个变量 end 来记录当前已选区间的结束时间,初始值为排序后的第一个区间的结束时间。
  3. 从第二个区间开始,遍历每一个区间。对于每个区间,比较它的起始时间与 end 的值,如果起始时间大于等于 end,则说明该区间与前面已选择的区间不重叠,我们可以选择这个区间,将 count 增加1,并更新 end 的值为当前区间的结束时间。
  4. 遍历完所有区间后,count 就是最多的不重叠区间的数量。原问题要求移除的最少区间数量,因此答案是总区间数减去 count
image.png
  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要 O ( n ) O(n) O(n)的栈空间。
function eraseOverlapIntervals(intervals: number[][]): number {
    intervals.sort((a, b) => a[1] - b[1]);
    let count = 1; // 不重复区间数量
    let end = intervals[0][1];
    for (let i = 1; i < intervals.length; i++) {
        if (intervals[i][0] >= end) { // 说明是另外一个区间
            end = intervals[i][1];
            count++;
        }
    }
    return intervals.length - count;
};

动态规划

待完善

763.划分字母区间

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。

注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s

返回一个表示每个字符串片段的长度的列表。

示例 1:

输入:s = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca"、"defegde"、"hijhklij" 。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。 

示例 2:

输入:s = "eccbbbbdec"
输出:[10]

提示:

  • 1 <= s.length <= 500
  • s 仅由小写英文字母组成

贪心

思路:

  1. 遍历字符串,记录每个字母最后一次出现的位置。
  2. 再次遍历字符串,用两个指针startend来表示当前片段的开始和结束位置。end初始时应该是第一个字母最后出现的位置。
  3. 对于每个字母,找到它最后出现的位置,并用它来更新end
  4. 当我们到达end位置时,我们找到了一个片段,将该片段的长度加入结果列表,并将start设为end + 1,继续寻找下一个片段。
  5. 重复步骤3和4,直到遍历完整个字符串。
image.png

image

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( k ) O(k) O(k),k是字符集的大小。
function partitionLabels(s: string): number[] {
    const letterLocation: Map<string, number> = new Map();
    for (let i = 0; i < s.length; i++) {
        letterLocation.set(s[i], i);
    }
    const res: number[] = [];
    let start = 0, end = 0;
    for (let i = 0; i < s.length; i++) {
        end = Math.max(end, letterLocation.get(s[i])); // 局部最优
        if (i === end) { // 说明到达字母的最后位置
            res.push(end - start + 1);
            start = end + 1;
        }
    }
    return res;
};

56.合并区间

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间

示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

提示:

  • 1 <= intervals.length <= 104
  • intervals[i].length == 2
  • 0 <= starti <= endi <= 104

排序+贪心

思路:

我们将列表中的区间按照左端点升序排序。然后我们将第一个区间加入 res 数组中,并按顺序依次考虑之后的每个区间:

  • 如果当前区间的左端点在数组 res 中最后一个区间的右端点之后,那么它们不会重合,我们可以直接将这个区间加入数组 merged 的末尾;
  • 否则,它们重合,我们需要用当前区间的右端点更新数组 res 中最后一个区间的右端点,将其置为二者的较大值。
56-2.png image.png
  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n)
function merge(intervals: number[][]): number[][] {
    intervals.sort((a, b) => a[0] - b[0]);
    const res: number[][] = [];
    for (let i = 0; i < intervals.length; i++) {
        if (!res.length || res[res.length - 1][1] < intervals[i][0]) {
            res.push(intervals[i]);
        } else {
            // 局部最优
            res[res.length - 1][1] = Math.max(res[res.length - 1][1], intervals[i][1]);
        }
    }
    return res;
};

738.单调递增的数字

当且仅当每个相邻位数上的数字 xy 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增

示例 1:

输入: n = 10
输出: 9

示例 2:

输入: n = 1234
输出: 1234

示例 3:

输入: n = 332
输出: 299

提示:

  • 0 <= n <= 109

贪心

思路:

  1. 从右到左遍历输入数字的每一位,设置一个 marker 标记
  2. 对于每一位,如果发现它比其左边的位小,则将左边的位减一,并将当前位及其右边的所有位都设置为9,因为我们希望数值尽可能大。
  3. 完成遍历后,从marker的位置从左到右遍历,将每个下标对应的值置为 9
  • 时间复杂度: O ( n ) O(n) O(n),n为数字长度。
  • 空间复杂度: O ( n ) O(n) O(n),需要一个字符数组。
function monotoneIncreasingDigits(n: number): number {
    const strArr = String(n).split("");
    let marker = strArr.length;
    for (let i = strArr.length - 1; i > 0; i--) {
        if (Number(strArr[i - 1]) > Number(strArr[i])) { // 局部最优
            strArr[i] = '9';
            marker = i;
            strArr[i - 1] = String(Number(strArr[i - 1]) - 1);
        }
    }
    // 将后面的数字都变成9
    for (let i = marker; i < strArr.length; i++) {
        strArr[i] = '9';
    }
    return Number(strArr.join(""));
};

968.监控二叉树

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

示例 1:

img

输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。

示例 2:

img

输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

提示:

  1. 给定树的节点数的范围是 [1, 1000]
  2. 每个节点的值都是 0。

后序遍历-DFS+贪心

解题思路:

  1. 使用深度优先搜索(DFS)对二叉树进行后序遍历。

  2. 定义三种状态来描述节点的覆盖情况:

    • 0:该节点未被覆盖。
    • 1:该节点已被覆盖,且该节点上安装了摄像头。
    • 2:该节点已被覆盖,但该节点上没有摄像头。
  3. 对于每个节点,根据其左右子节点的状态来决定该节点的状态:

    • 如果左右子节点都被覆盖但没有摄像头(状态2),那么当前节点未被覆盖(状态0)。

      968.监控二叉树2.png
    • 如果左或右子节点未被覆盖(状态0),那么在当前节点安装摄像头,使其变为状态1,并增加摄像头计数。

      968.监控二叉树1.png
    • 如果左或右子节点上有摄像头(状态1),那么当前节点已被覆盖但没有摄像头(状态2)。

  4. 对于根节点,如果其状态为0(未被覆盖),则在根节点上安装摄像头,并增加摄像头计数。

    968.监控二叉树3.png
  5. 返回总的摄像头计数。

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function minCameraCover(root: TreeNode | null): number {
    let count = 0;
    function dfs(cur: TreeNode | null): number {
        if (cur === null) return 2;

        const left = dfs(cur.left);
        const right = dfs(cur.right);

        if (left === 2 && right === 2) { // 左右子节点都有覆盖
            return 0;
        }

        if (left === 0 || right === 0) { // 左或右子节点无覆盖,局部最优
            count++;
            return 1;
        }

        if (left === 1 || right === 1) { // 左或右子节点有摄像头
            return 2;
        }
    }
    if (dfs(root) === 0) {
        count++;
    }
    return count;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值