文章目录
解题技巧
贪心算法是一种基于贪心策略的算法,用于解决最优化问题。在贪心算法中,每一步都选择当前看起来最优的选择,而不考虑该选择对以后的步骤的影响。贪心算法通常通过一系列的局部最优选择来达到全局最优解。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
455.分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子
i
,都有一个胃口值g[i]
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j
,都有一个尺寸s[j]
。如果s[j] >= g[i]
,我们可以将这个饼干j
分配给孩子i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。示例 1:
输入: g = [1,2,3], s = [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3] 输出: 2 解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。 你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.
提示:
1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1
贪心+双指针
- 时间复杂度: O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn),其中 m m m 和 n n n 分别是数组 g g g 和 s s s 的长度。对两个数组排序的时间复杂度是 O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn),遍历数组的时间复杂度是 O ( m + n ) O(m+n) O(m+n),因此总时间复杂度是 O ( m l o g m + n l o g n ) O(mlogm+nlogn) O(mlogm+nlogn)。
- 空间复杂度: O ( l o g m + l o g n ) O(logm+logn) O(logm+logn),其中 m m m 和 n n n 分别是数组 g g g 和 s s s 的长度。空间复杂度主要是排序的额外空间开销。
function findContentChildren(g: number[], s: number[]): number {
g.sort((a, b) => a - b); // 从小到大排序
s.sort((a, b) => a - b);
let si = 0;
let gi = 0;
let res = 0;
while (si < s.length && gi < g.length) {
if (s[si] >= g[gi]) {
gi++;
res++;
}
si++;
}
return res;
};
376.摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 **摆动序列 。**第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
- 例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。- 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组
nums
,返回nums
中作为 摆动序列 的 最长子序列的长度 。示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9] 输出:2
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
贪心解法一
思路:在遍历数组时,维护两个变量up和down,分别记录到当前位置为止,以上升和以下降结尾的最长摇摆子序列长度。当元素上升时,更新up为down+1;当元素下降时,更新down为up+1。最终结果是max(up, down)。
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function wiggleMaxLength(nums: number[]): number {
if (nums.length < 2) { return nums.length };
let down = 1;
let up = 1;
for (let i = 1; i < nums.length; i++) {
if (nums[i] > nums[i - 1]) { // 上升
up = down + 1;
}
else if (nums[i] < nums[i - 1]) { // 下降
down = up + 1;
}
}
return Math.max(up, down);
};
贪心解法二
计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0
或者 prediff > 0 && curdiff < 0
此时就有波动就需要统计。
本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function wiggleMaxLength(nums: number[]): number {
if (nums.length < 2) return nums.length;
let preDiff = 0;
let curDiff = 0;
let result = 1;
for (let i = 0; i < nums.length - 1; i++) {
curDiff = nums[i+1] - nums[i];
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff;
}
}
return result;
};
动态规划
待完善
53.最大子数组和
给你一个整数数组
nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1] 输出:1
示例 3:
输入:nums = [5,4,-1,7,8] 输出:23
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
贪心
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function maxSubArray(nums: number[]): number {
let res = -Infinity;
let sum = 0;
for (let i = 0; i < nums.length; i++) {
sum += nums[i];
res = Math.max(sum, res);
if (sum < 0) sum = 0;
}
return res;
};
122.买卖股票的最佳时机Ⅱ
给你一个整数数组
prices
,其中prices[i]
表示某支股票第i
天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4] 输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。 总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。
提示:
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
贪心
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function maxProfit(prices: number[]): number {
let res = 0;
for (let i = 1; i < prices.length; i++) {
const price = prices[i] - prices[i - 1];
if (price > 0) {
res += price; // 贪心,只收集每天正利润
}
}
return res;
};
55.跳跃游戏
给定一个非负整数数组
nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
示例 1:
输入:nums = [2,3,1,1,4] 输出:true 解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4] 输出:false 解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
提示:
1 <= nums.length <= 3 * 104
0 <= nums[i] <= 105
贪心
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function canJump(nums: number[]): boolean {
let cover = 0;
for (let i = 0; i <= cover; i++) {
cover = Math.max(nums[i] + i, cover);
if (cover >= nums.length - 1) return true;
}
return false;
};
45.跳跃游戏Ⅱ
给定一个长度为
n
的 0 索引整数数组nums
。初始位置为nums[0]
。每个元素
nums[i]
表示从索引i
向前跳转的最大长度。换句话说,如果你在nums[i]
处,你可以跳转到任意nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达
nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达nums[n - 1]
。示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是 2。 从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
贪心
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function jump(nums: number[]): number {
if (nums.length === 1) return 0;
let ans = 0;
let start = 0;
let end = 1;
while (end < nums.length) {
let max = 0;
for (let i = start; i < end; i++) {
max = Math.max(nums[i] + i, max);
}
start = end;
end = max + 1;
ans++;
}
return ans;
};
1005.K次取反最大化的数组和
给你一个整数数组
nums
和一个整数k
,按以下方法修改该数组
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。重复这个过程恰好
k
次。可以多次选择同一个下标i
。以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1 输出:5 解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3 输出:6 解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2 输出:13 解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
贪心
思路:
-
第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
-
第二步:从前向后遍历,遇到负数将其变为正数,同时K–
-
第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
-
第四步:求和
-
时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)。
-
空间复杂度: O ( 1 ) O(1) O(1)。
function largestSumAfterKNegations(nums: number[], k: number): number {
nums.sort((a, b) => Math.abs(b) - Math.abs(a)); // 按绝对值从大到小排
for (let i = 0; i < nums.length; i++) {
if (nums[i] < 0 && k > 0) {
nums[i] = -nums[i];
k--;
}
if (k === 0) break;
}
if (k % 2 === 1) nums[nums.length - 1] *= -1;
let res = 0;
for (let num of nums) {
res += num;
}
return res;
};
134.加油站
在一条环路上有
n
个加油站,其中第i
个加油站有汽油gas[i]
升。你有一辆油箱容量无限的的汽车,从第
i
个加油站开往第i+1
个加油站需要消耗汽油cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。给定两个整数数组
gas
和cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回-1
。如果存在解,则 保证 它是 唯一 的。示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
贪心
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
function canCompleteCircuit(gas: number[], cost: number[]): number {
let spare = 0;
let minSpare = Infinity;
let minIndex = 0;
for (let i = 0; i < gas.length; i++) {
spare += gas[i] - cost[i];
if (spare < minSpare) {
minSpare = spare;
minIndex = i + 1;
}
}
return spare < 0 ? -1 : minIndex % gas.length;
};
135.分发糖果
n
个孩子站成一排。给你一个整数数组ratings
表示每个孩子的评分。你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。- 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2] 输出:4 解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
提示:
n == ratings.length
1 <= n <= 2 * 104
0 <= ratings[i] <= 2 * 104
贪心
- 时间复杂度: O ( N ) O(N) O(N),遍历两遍数组即可得到结果;
- 空间复杂度:
O
(
N
)
O(N)
O(N),需要借用
leftArr
和rightArr
的线性额外空间。
function candy(ratings: number[]): number {
let leftArr = new Array(ratings.length).fill(1);
let rightArr = new Array(ratings.length).fill(1);
for (let i = 1; i < leftArr.length; i++) {
if (ratings[i] > ratings[i - 1]) {
leftArr[i] = leftArr[i - 1] + 1;
}
}
let count = leftArr[ratings.length - 1];
for (let i = rightArr.length - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
rightArr[i] = rightArr[i+1] + 1;
}
count += Math.max(leftArr[i], rightArr[i]);
}
return count;
};
860.柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为
5
美元。顾客排队购买你的产品,(按账单bills
支付的顺序)一次购买一杯。每位顾客只买一杯柠檬水,然后向你付
5
美元、10
美元或20
美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付5
美元。注意,一开始你手头没有任何零钱。
给你一个整数数组
bills
,其中bills[i]
是第i
位顾客付的账。如果你能给每位顾客正确找零,返回true
,否则返回false
。示例 1:
输入:bills = [5,5,5,10,20] 输出:true 解释: 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。 由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
输入:bills = [5,5,10,10,20] 输出:false 解释: 前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。 对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。 对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。 由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
1 <= bills.length <= 105
bills[i]
不是5
就是10
或是20
贪心
思路:
有如下三种情况:
-
情况一:账单是5,直接收下。
-
情况二:账单是10,消耗一个5,增加一个10
-
情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5(贪心,先消耗10和5,不行再消耗3个5)
function lemonadeChange(bills: number[]): boolean {
let five = 0, ten = 0;
for (let i = 0; i < bills.length; i++) {
if (bills[i] === 5) {
five++;
} else if (bills[i] === 10) {
if (five > 0) {
five--;
ten++;
} else {
return false;
}
} else {
if (five > 0 && ten > 0) {
five--;
ten--;
} else if (five > 2) {
five -= 3;
} else {
return false
}
}
}
return true;
};
406.根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组
people
表示队列中一些人的属性(不一定按顺序)。每个people[i] = [hi, ki]
表示第i
个人的身高为hi
,前面 正好 有ki
个身高大于或等于hi
的人。请你重新构造并返回输入数组
people
所表示的队列。返回的队列应该格式化为数组queue
,其中queue[j] = [hj, kj]
是队列中第j
个人的属性(queue[0]
是排在队列前面的人)。示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]] 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 解释: 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]] 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
1 <= people.length <= 2000
0 <= hi <= 106
0 <= ki < people.length
- 题目数据确保队列可以被重建
排序+贪心
思路:
身高从大到小排列,k从小到大排列。
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
- 时间复杂度: O ( n 2 ) O(n^2) O(n2),n 是数组people的长度。我们需要 O ( n l o g n ) O(nlogn) O(nlogn)的时间进行排序,随后需要 O ( n 2 ) O(n^2) O(n2)的时间遍历每一个人并将他们放入队列中。
- 空间复杂度: O ( l o g n ) O(logn) O(logn)。
function reconstructQueue(people: number[][]): number[][] {
people.sort((a, b) => a[0] === b[0] ? a[1] - b[1] : b[0] - a[0]); // 身高从大到小,k从小到大
const res: number[][] = [];
for (let i = 0; i < people.length; i++) {
res.splice(people[i][1], 0, people[i]);
}
return res;
};
452.用最少数量的箭引爆气球
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组
points
,其中points[i] = [xstart, xend]
表示水平直径在xstart
和xend
之间的气球。你不知道气球的确切 y 坐标。一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标
x
处射出一支箭,若有一个气球的直径的开始和结束坐标为x``start
,x``end
, 且满足xstart ≤ x ≤ x``end
,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。给你一个数组
points
,返回引爆所有气球所必须射出的 最小 弓箭数 。示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]] 输出:2 解释:气球可以用2支箭来爆破: -在x = 6处射出箭,击破气球[2,8]和[1,6]。 -在x = 11处发射箭,击破气球[10,16]和[7,12]。
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]] 输出:4 解释:每个气球需要射出一支箭,总共需要4支箭。
示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]] 输出:2 解释:气球可以用2支箭来爆破: - 在x = 2处发射箭,击破气球[1,2]和[2,3]。 - 在x = 4处射出箭,击破气球[3,4]和[4,5]。
提示:
1 <= points.length <= 105
points[i].length == 2
-231 <= xstart < xend <= 231 - 1
排序+贪心
局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
- 时间复杂度: O ( n l o g n ) O(nlog n) O(nlogn),因为有一个快排
- 空间复杂度: O ( 1 ) O(1) O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要 O ( n ) O(n) O(n)的栈空间
function findMinArrowShots(points: number[][]): number {
let res = 0;
points.sort((a, b) => a[1] - b[1]);
let curNum = Infinity;
let i = 0;
while (i < points.length) {
if (curNum < points[i][0] || curNum > points[i][1]) {
curNum = points[i][1]; // 贪心,取最大边界
res++;
}
i++;
}
return res;
};
435.无重叠区间
给定一个区间的集合
intervals
,其中intervals[i] = [starti, endi]
。返回 需要移除区间的最小数量,使剩余区间互不重叠 。示例 1:
输入: intervals = [[1,2],[2,3],[3,4],[1,3]] 输出: 1 解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: intervals = [ [1,2], [1,2], [1,2] ] 输出: 2 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: intervals = [ [1,2], [2,3] ] 输出: 0 解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
提示:
1 <= intervals.length <= 105
intervals[i].length == 2
-5 * 104 <= starti < endi <= 5 * 104
排序+贪心
思路:
- 将区间按照结束时间从小到大进行排序。
- 初始化一个变量来记录不重叠区间的数量,比如命名为
count
,并设置其初始值为1,因为我们总可以选择第一个区间。同时,维护一个变量end
来记录当前已选区间的结束时间,初始值为排序后的第一个区间的结束时间。 - 从第二个区间开始,遍历每一个区间。对于每个区间,比较它的起始时间与
end
的值,如果起始时间大于等于end
,则说明该区间与前面已选择的区间不重叠,我们可以选择这个区间,将count
增加1,并更新end
的值为当前区间的结束时间。 - 遍历完所有区间后,
count
就是最多的不重叠区间的数量。原问题要求移除的最少区间数量,因此答案是总区间数减去count
。
- 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)。
- 空间复杂度: O ( n ) O(n) O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要 O ( n ) O(n) O(n)的栈空间。
function eraseOverlapIntervals(intervals: number[][]): number {
intervals.sort((a, b) => a[1] - b[1]);
let count = 1; // 不重复区间数量
let end = intervals[0][1];
for (let i = 1; i < intervals.length; i++) {
if (intervals[i][0] >= end) { // 说明是另外一个区间
end = intervals[i][1];
count++;
}
}
return intervals.length - count;
};
动态规划
待完善
763.划分字母区间
给你一个字符串
s
。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是
s
。返回一个表示每个字符串片段的长度的列表。
示例 1:
输入:s = "ababcbacadefegdehijhklij" 输出:[9,7,8] 解释: 划分结果为 "ababcbaca"、"defegde"、"hijhklij" 。 每个字母最多出现在一个片段中。 像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。
示例 2:
输入:s = "eccbbbbdec" 输出:[10]
提示:
1 <= s.length <= 500
s
仅由小写英文字母组成
贪心
思路:
- 遍历字符串,记录每个字母最后一次出现的位置。
- 再次遍历字符串,用两个指针
start
和end
来表示当前片段的开始和结束位置。end
初始时应该是第一个字母最后出现的位置。 - 对于每个字母,找到它最后出现的位置,并用它来更新
end
。 - 当我们到达
end
位置时,我们找到了一个片段,将该片段的长度加入结果列表,并将start
设为end + 1
,继续寻找下一个片段。 - 重复步骤3和4,直到遍历完整个字符串。
- 时间复杂度: O ( n ) O(n) O(n)。
- 空间复杂度: O ( k ) O(k) O(k),k是字符集的大小。
function partitionLabels(s: string): number[] {
const letterLocation: Map<string, number> = new Map();
for (let i = 0; i < s.length; i++) {
letterLocation.set(s[i], i);
}
const res: number[] = [];
let start = 0, end = 0;
for (let i = 0; i < s.length; i++) {
end = Math.max(end, letterLocation.get(s[i])); // 局部最优
if (i === end) { // 说明到达字母的最后位置
res.push(end - start + 1);
start = end + 1;
}
}
return res;
};
56.合并区间
以数组
intervals
表示若干个区间的集合,其中单个区间为intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]] 输出:[[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]] 输出:[[1,5]] 解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
1 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 104
排序+贪心
思路:
我们将列表中的区间按照左端点升序排序。然后我们将第一个区间加入 res
数组中,并按顺序依次考虑之后的每个区间:
- 如果当前区间的左端点在数组
res
中最后一个区间的右端点之后,那么它们不会重合,我们可以直接将这个区间加入数组 merged 的末尾; - 否则,它们重合,我们需要用当前区间的右端点更新数组
res
中最后一个区间的右端点,将其置为二者的较大值。
- 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)。
- 空间复杂度: O ( n ) O(n) O(n)。
function merge(intervals: number[][]): number[][] {
intervals.sort((a, b) => a[0] - b[0]);
const res: number[][] = [];
for (let i = 0; i < intervals.length; i++) {
if (!res.length || res[res.length - 1][1] < intervals[i][0]) {
res.push(intervals[i]);
} else {
// 局部最优
res[res.length - 1][1] = Math.max(res[res.length - 1][1], intervals[i][1]);
}
}
return res;
};
738.单调递增的数字
当且仅当每个相邻位数上的数字
x
和y
满足x <= y
时,我们称这个整数是单调递增的。给定一个整数
n
,返回 小于或等于n
的最大数字,且数字呈 单调递增 。示例 1:
输入: n = 10 输出: 9
示例 2:
输入: n = 1234 输出: 1234
示例 3:
输入: n = 332 输出: 299
提示:
0 <= n <= 109
贪心
思路:
- 从右到左遍历输入数字的每一位,设置一个 marker 标记
- 对于每一位,如果发现它比其左边的位小,则将左边的位减一,并将当前位及其右边的所有位都设置为9,因为我们希望数值尽可能大。
- 完成遍历后,从marker的位置从左到右遍历,将每个下标对应的值置为 9
- 时间复杂度: O ( n ) O(n) O(n),n为数字长度。
- 空间复杂度: O ( n ) O(n) O(n),需要一个字符数组。
function monotoneIncreasingDigits(n: number): number {
const strArr = String(n).split("");
let marker = strArr.length;
for (let i = strArr.length - 1; i > 0; i--) {
if (Number(strArr[i - 1]) > Number(strArr[i])) { // 局部最优
strArr[i] = '9';
marker = i;
strArr[i - 1] = String(Number(strArr[i - 1]) - 1);
}
}
// 将后面的数字都变成9
for (let i = marker; i < strArr.length; i++) {
strArr[i] = '9';
}
return Number(strArr.join(""));
};
968.监控二叉树
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
输入:[0,0,null,0,0] 输出:1 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
输入:[0,0,null,0,null,0,null,null,0] 输出:2 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是
[1, 1000]
。- 每个节点的值都是 0。
后序遍历-DFS+贪心
解题思路:
-
使用深度优先搜索(DFS)对二叉树进行后序遍历。
-
定义三种状态来描述节点的覆盖情况:
- 0:该节点未被覆盖。
- 1:该节点已被覆盖,且该节点上安装了摄像头。
- 2:该节点已被覆盖,但该节点上没有摄像头。
-
对于每个节点,根据其左右子节点的状态来决定该节点的状态:
-
如果左右子节点都被覆盖但没有摄像头(状态2),那么当前节点未被覆盖(状态0)。
-
如果左或右子节点未被覆盖(状态0),那么在当前节点安装摄像头,使其变为状态1,并增加摄像头计数。
-
如果左或右子节点上有摄像头(状态1),那么当前节点已被覆盖但没有摄像头(状态2)。
-
-
对于根节点,如果其状态为0(未被覆盖),则在根节点上安装摄像头,并增加摄像头计数。
-
返回总的摄像头计数。
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function minCameraCover(root: TreeNode | null): number {
let count = 0;
function dfs(cur: TreeNode | null): number {
if (cur === null) return 2;
const left = dfs(cur.left);
const right = dfs(cur.right);
if (left === 2 && right === 2) { // 左右子节点都有覆盖
return 0;
}
if (left === 0 || right === 0) { // 左或右子节点无覆盖,局部最优
count++;
return 1;
}
if (left === 1 || right === 1) { // 左或右子节点有摄像头
return 2;
}
}
if (dfs(root) === 0) {
count++;
}
return count;
};