1. DeepSeek AI 和豆包 AI 的文档提取能力
这些 AI 服务的文档提取能力通常是通过以下方式实现的:
- PDF 解析:
- 对于文本型 PDF,使用 PDF 解析库(如 PyMuPDF、PyPDF2)直接提取文字。
- 对于扫描件或图像型 PDF,使用 OCR 工具(如 Tesseract、PaddleOCR)提取文字。
- 文本处理:
- 将提取的文字输入 AI 模型(如 DeepSeek)进行进一步处理,例如生成摘要、回答问题等。
- 多模态支持:
- 结合图像和文本信息,使用多模态模型(如 CLIP、BLIP)增强理解能力。
2. 本地部署 DeepSeek 并实现 PDF 识别
以下是详细步骤,帮助您在本地部署 DeepSeek 并结合外部工具实现 PDF 文件识别:
步骤 1:安装 DeepSeek 模型
- 下载 DeepSeek 模型文件(如
deepseek-r1:32b
)。 - 使用
ollama
或其他工具加载模型:ollama serve ollama pull deepseek-r1:32b
步骤 2:安装 PDF 解析和 OCR 工具
- 安装 PDF 解析库:
pip install PyMuPDF PyPDF2
- 安装 OCR 工具:
- 安装 Tesseract:
# macOS brew install tesseract # Ubuntu/Debian sudo apt-get install tesseract-ocr # Windows:下载 Tesseract 安装包并添加到系统路径
- 安装 PaddleOCR:
pip install paddleocr
- 安装 Tesseract:
步骤 3:编写 PDF 解析和 OCR 代码
以下是一个示例代码,展示如何提取 PDF 文字并调用 DeepSeek 模型:
import fitz # PyMuPDF
from paddleocr import PaddleOCR
import requests
# 初始化 PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang="ch")
def extract_text_from_pdf(pdf_path):
# 打开 PDF 文件
pdf_document = fitz.open(pdf_path)
text = ""
# 遍历每一页
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
page_text = page.get_text()
if page_text.strip(): # 如果是文本型 PDF
text += page_text
else: # 如果是图像型 PDF,使用 OCR
pix = page.get_pixmap()
image_path = f"page_{page_num + 1}.png"
pix.save(image_path)
result = ocr.ocr(image_path, cls=True)
page_text = "\n".join([line[1][0] for line in result[0]])
text += page_text
return text
# 调用 DeepSeek 模型
def call_deepseek_model(text):
url = "http://localhost:11434/api/generate" # ollama 的 API 地址
payload = {
"model": "deepseek-r1:32b",
"prompt": text,
"stream": False
}
response = requests.post(url, json=payload)
return response.json()["response"]
# 示例:提取 PDF 文字并调用 DeepSeek
pdf_path = "example.pdf"
extracted_text = extract_text_from_pdf(pdf_path)
response = call_deepseek_model(extracted_text)
print(response)
步骤 4:运行代码
- 将上述代码保存为
pdf_to_deepseek.py
。 - 运行代码:
python pdf_to_deepseek.py
3. DeepSeek AI 和豆包 AI 的实现原理
这些服务的文档提取能力通常是通过以下方式实现的:
- 文件上传:
- 用户上传 PDF 文件,服务端接收文件并存储。
- 文件解析:
- 对于文本型 PDF,使用 PDF 解析库提取文字。
- 对于图像型 PDF,使用 OCR 工具提取文字。
- 文本处理:
- 将提取的文字输入 AI 模型(如 DeepSeek)进行处理。
- 结果返回:
- 将处理结果(如摘要、问答)返回给用户。
4. 优化建议
- 多语言支持:根据需要配置 OCR 工具的语言模型(如中文、英文)。
- 批量处理:对于多页 PDF,可以批量提取图像并并行处理 OCR。
- 缓存机制:对于重复文件,可以缓存提取的文字以提高效率。
总结
通过结合 PDF 解析库(如 PyMuPDF)和 OCR 工具(如 PaddleOCR),您可以在本地部署的 DeepSeek 模型中实现 PDF 文件识别功能。DeepSeek AI 和豆包 AI 的文档提取能力也是基于类似的原理实现的。如果您有更多问题,欢迎继续讨论!