深度学习的“Hello World”,Mnist手写体数字识别

本文介绍了使用TensorFlow进行MNIST手写数字识别的教程,包括数据预处理、softmax回归模型建立及训练过程。通过调整学习率,通常在2000个epoch后可达到92%的精度。此外,还提供了Keras实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

手写体数字识别这个问题,网上相关的博客很多了,大多的教程和深度学习的书里面,特别是以tensorflow作为工具,这个例子总是最容易提到的。特别的Mnist是tensorflow的官方教程。所以可以参考的比较多。例如下面的官方的github和教程。可以帮你解决一些bug。

tensorflow,Mnist官方教程tensorflow,

Mnist官方github代码

  1. 数据集的准备

官方的教程是直接调用了自带的例子如下,不过运行后发现,官方将不再支持这样的操作,会在之后的版本移除,而且运行起来非常慢。仔细查看源码后发现,里面需要在某个网址下载数据集并解压,而这个网址下载速度很慢。

from tensorflow.examples.tutorials.mnist import input_data
mnist = inpiut_data.read_data_sets("MNIST_data",one_hot=True)

所以就先去这个网址下载了数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值