深度学习:实现mnist手写数字识别

本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制

我的环境:

1.语言环境:Python 3.7

2.编译器:Pycharm

3.深度学习环境:TensorFlow2.5

一、前期工作

1.设置GPU(若使用的是cpu则可忽略)


gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpu[0]  #若有多个GPU,仅仅使用第0个
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2.导入数据

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import  tensorflow as tf
# 导入mnist数据,依次分别为训练集图片,训练集标签,测试集图片,测试集标签
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化(详细请参考归一化

归一化可将数据”拍扁“统一到区间

使不同纲领的特征处于同一数值量级,减少方差大的特征影响,使模型更准确

加快学习算法的收敛速度

# 将像素点值标准化至0到1区间内。(对于灰度图片,每个像素最大值是255,最小值是0,直接除以255即可完成归一化)
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维度
train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

4.可视化图片

# 将数据集前20个图片可视化显示
# 进行图像大小为10宽、5长的绘图(单位为英寸inch)
plt.figure(figsize=(10, 5))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图
    plt.subplot(2, 10, i + 1)
    # 设置x轴不显示刻度
    plt.xticks([])
    # 设置y轴不显示刻度
    plt.yticks([])
    # 设置不显示子图网格
    plt.grid(False)
    # 图像展示,cmp为颜色图谱,“plt.cm.binary”为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

 5.调整图片格式

# 调整数据到我们需要的格式
train_images = train_images.reshape((60000,28,28,1))
test_images = test_images.reshape((10000,28,28,1))
train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

二、构建CNN网络模型

 创建并设置卷积神经网络

卷积层:通过卷积操作对输入图像进行降为和特征抽取

池化层:是一中非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒。

MaxPool2d(2, 2) MaxPool 最大池化层,池化层在卷积神经网络中的作用在于特征融合和降维。池化也是一种类似的卷积操作,只是池化层的所有参数都是超参数,是学习不到的。maxpooling有局部不变性而且可以提取显著特征的同时降低模型的参数,从而降低模型的过拟合。只提取了显著特征,而舍弃了不显著的信息,是的模型的参数减少了,从而一定程度上可以缓解过拟合的产生。

全连接层:在经过几个卷积和池化层后,神经网路的高级推理通过全连接层来完成。

model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3的卷积核,activation参数将激活函数设置为ReLu函数,
    # input_shape参数将图层的输入形状设置为(28,28,1)
    # ReLu函数作为激活函数可以增强判定函数和整个神经网络的非线性特性,而本身不会改变卷积层
    # 相比其他函数来说,ReLu函数更青睐,因为够简单,能够提升网络的训练速度,而不会影响模型的泛化性
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    # 池化层1, 2*2采样
    layers.MaxPooling2D((2, 2)),
    # 设置二维卷积层2,设置64个3*3的卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    # 池化层2, 2*2采样
    layers.MaxPooling2D((2, 2)),

    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10)  # 有十个手写数字
])
#打印网络结构
model.summary()

三、编译模型

# model.compile()方法用于在配置训练方法时,告知训练时用的优化器,损失函数和准确率评测标准
model.compile(
    # Adam 优化器
    optimizer='adam',
    # 设置交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from——logits为True时,会将y_pred转化为概率(用softmax)否则不进行转换,通常情况下用True结果更稳定
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy'])

四、训练模型(可参考(19条消息) 机器学习100天_K同学啊的博客-CSDN博客

history = model.fit(
#输入训练集图片
    train_images,
#输入训练集标签
    train_labels,
#设置10个epoch,每个epoch都将会把所有的数据输入模型完成一次训练
    epochs=10,
#设置验证集
    validation_data=(test_images, test_labels))

五、预测

plt.imshow(test_images[5].reshape(28,28))
plt.show()

输出测试集中的第一张图片的预测结果

pre = model.predict(test_images) #对所有测试图片进行预测
pre[1] #输出测试集中的第一张图片的预测结果

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值