用rnn做文本生成

本文介绍了如何利用RNN(循环神经网络),特别是LSTM,进行文本生成。以温斯顿·丘吉尔的人物传记为语料,通过One-Hot编码处理字符,构建训练和测试数据集。接着建立LSTM模型,并进行训练,展示了一个简单的文本预测过程。
摘要由CSDN通过智能技术生成

用RNN做文本生成

举个小小的例子,来看看LSTM是怎么玩的

我们这里用温斯顿丘吉尔的人物传记作为我们的学习语料。

(各种中文语料可以自行网上查找,英文的小说语料可以从古登堡计划网站下载txt平文本:https://www.gutenberg.org/wiki/Category:Bookshelf)

第一步,一样,先导入各种库

import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils

接下来,我们把文本读入

raw_text = open('../input/Winston_Churchil.txt').read()
raw_text = raw_text.lower()

既然我们是以每个字母为层级,字母总共才26个,所以我们可以很方便的用One-Hot来编码出所有的字母(当然,可能还有些标点符号和其他noise)

chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))

我们看到,全部的chars:

chars
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值