题意:给出n,给出一种排列, 问有多少个排列,依次插入二叉查找树后和它形态一样(最普通的不旋转,别想多)
首先明确,在一个排列中,一个数后面的数,比它小的一定在它左子树,比它大的一定在右子树。所以在这棵排序二叉树中,如果一个节点的左子树中每个节点确定了插入顺序,右子树中每个节点规定了插入顺序,那么对于这个节点来说,只要它后面每个小于它的数,在小于它的中排名不变,比它大的数同理,那么无论怎样排列都不会影响形态。例如它的左子树确定了每个数在排列中的顺序,l1,l2,l3...同理右子树r1,r2,r3...,那么对于这个点的所有子节点,l1l2r1l3r2r3还是l1r1l2l3r2r3都不会改变二叉排序树形态,所以就是左子树方案*右子树方案数*(左子树加右子树中取左子树节点数的组合)
所以就可以先把目标排列建树,处理出来每个节点对应的左右子树节点数,确定这个树的形态,做树形dp。
然而预处理是nlogn的,如果碰到大数据卡log时会gg,看到了一个dalaoO(n)求解orz
https://blog.csdn.net/zhaosdfa/article/details/39853421
放上我丑陋无比的代码
include<iostream>
#include<cstdio>
#include<cstring>
#define fr(i,s,t) for (i=s;i<=t;i++)
#define MOD (9999991)
#define ls (T[rt].lson)
#define rs (T[rt].rson)
#define LL long long
using namespace std;
int Size,n,A[50];
LL c[50][50];
struct Node{
int siz,lson,rson,val;
}T[5000];
void update(int rt){
T[rt].siz=1;
if (ls) T[rt].siz+=T[ls].siz;
if (rs) T[rt].siz+=T[rs].siz;
}
void Insert(int &rt,int x){
if (!rt){
rt=++Size; T[rt].siz=1; T[rt].val=x; return;
}
if (x<=T[rt].val) Insert(ls,x);
else Insert(rs,x);;
update(rt);
}
LL Dfs(int rt){
LL res=1;
if (ls)
res=(res*Dfs(ls))%MOD;
if (rs)
res=(res*Dfs(rs))%MOD;
res=(res*c[T[rt].siz-1][T[ls].siz])%MOD;
return res;
}
void Work(){
scanf("%d",&n);
int i,rt=0;
Size=0;
memset(T,0,sizeof(T));
fr(i,1,n) scanf("%d",&A[i]),Insert(rt,A[i]);
printf("%lld\n",Dfs(rt)%MOD);
}
int main(){
// freopen("d.in","r",stdin);
// freopen("m.out","w",stdout);
int i,j;
c[0][0]=1;
fr(i,1,30){
c[i][0]=c[i][i]=1;
fr(j,1,i-1) c[i][j]=c[i-1][j]+c[i-1][j-1],c[i][j]%=MOD;
}
int T_num; scanf("%d",&T_num);
while (T_num--) Work();
}