运用【曼哈顿距离变形】的逆变换.
/* I will wait for you */
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <string>
#define make make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int maxn = 1000010;
const int maxm = 1010;
const int maxs = 26;
const int inf = 0x3f3f3f3f;
const int P = 1000000007;
const double error = 1e-9;
inline ll read()
{
ll x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : 1),
ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0',
ch = getchar();
return x * f;
}
double x[maxn], y[maxn];
int dx[9] = {0, 0, 0, 1, 1, 1, -1, -1, -1};
int dy[9] = {0, 1, -1, 0, 1, -1, 0, 1, -1};
int n, px[maxn], py[maxn];
ll work(int fx,int fy)
{
ll ans = 0;
for (int i = 0; i < n; i++)
ans += (ll) max(abs(fx - px[i]),
abs(fy - py[i]));
return ans;
}
int main()
{
n = read();
for (int i = 0; i < n; i++) {
px[i] = read(), py[i] = read();
x[i] = (px[i] + py[i]) / 2.0;
y[i] = (px[i] - py[i]) / 2.0;
}
nth_element(x, x + n / 2, x + n);
nth_element(y, y + n / 2, y + n);
double fx = x[n / 2] + y[n / 2];
double fy = x[n / 2] - y[n / 2];
ll ans = (ll) inf * inf;
for (int i = 0; i < 9; i++)
ans = min(ans, work(
fx + dx[i], fy + dy[i]));
printf("%lld\n", ans);
return 0;
}