3210: 花神的浇花集会
Description
在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动。
具体浇水活动详情请见BZOJ3153
但这不是重点
花神出了好多题,每道题都有两个参考系数:代码难度和算法难度
花神为了准备浇花集会的题,必须找一道尽量适合所有人的题
现在花神知道每个人的代码能力x和算法能力y,一道题(代码难度X算法难度Y)对这个人的不适合度为 Max ( abs ( X – x ) , abs ( Y – y ) )
也就是说无论太难还是太简单都会导致题目不适合做(如果全按花神本人能力设题,绝对的全场爆0的节奏,太简单,则体现不出花神的实力)
当然不是每次都如花神所愿,不一定有一道题适合所有人,所以要使所有人的不合适度总和尽可能低
花神出了100001*100001道题,每道题的代码难度和算法难度都为0,1,2,3,……,100000
Input
第一行一个正整数N,表示花神有N个学生,花神要为这N个学生选一道题
接下来N行,每行两个空格隔开的整数x[i],y[i],表示这个学生的代码能力和算法能力
Output
一个整数,表示最小的不合适度总和
Sample Input
3
1 2
2 1
3 3
Sample Output
3
HINT
对于100%的数据,n<=100000,0<=x[i],y[i]<=100000
Source
mjmjmj命题Stilwell制作数据
题目大意:
给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小
思路:
有定理: 对于点对(x,y),变换成(x+y,x-y),那么两两之间的切比雪夫距离=曼哈顿距离/2。
由于曼哈顿距离中横纵坐标不互相干扰,因此我们可以将横纵坐标分开处理。
每一维要选一个坐标,到其他所有坐标的绝对值之和最小,就是中位数。但是直接选择两个中位数得到的点,横纵坐标奇偶性可能不同,这样代回计算中就是整点。
因此如果得到的点横纵坐标奇偶性相同直接输出距离,不同的话选择周围的四个点进行判定,选择最小的ans输出即可。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#define N 100010
#define LL long long
using namespace std;
int n;
int x[N], y[N], a[N], b[N];
LL solve(int X, int Y){
LL rt = 0;
for(int i=1; i<=n; i++)
rt += abs(x[i] - X) + abs(y[i] - Y);
return rt;
}
int main(){
scanf("%d", &n);
for(int i=1; i<=n; i++){
scanf("%d%d", &a[i], &b[i]);
x[i] = a[i] + b[i]; y[i] = a[i] - b[i];
}
sort(x+1, x+n+1);
sort(y+1, y+n+1);
int X = x[(n+1)/2], Y = y[(n+1)/2];//中位数
if( ((X ^ Y) & 1) == 0 )//奇偶性不同,转回原图时/2不为整点
printf("%lld\n", solve(X, Y) / 2);
else {
LL ans1 = min(solve(X+1,Y), solve(X-1,Y)), ans2 = min(solve(X,Y+1), solve(X,Y-1));
printf("%lld\n", min(ans1 / 2, ans2 / 2));
}
return 0;
}