BZOJ3265【单纯形】

/* I will wait for you*/

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <string>
#define make make_pair
#define fi first
#define se second

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;

const int maxn = 10010;
const int maxm = 1010;
const int maxs = 26;
const double inf = 1e10;
const int P = 1000000007;
const double error = 1e-7;

inline ll read()
{
	ll x = 0, f = 1; char ch = getchar();
	while (ch <= 47 || ch >= 58)
		f = (ch == 45 ? -1 : 1), ch = getchar();
	while (ch >= 48 && ch <= 57)
		x = x * 10 + ch - 48, ch = getchar();
	return x * f;
}

double v, a[maxn][maxm], b[maxn], c[maxm];

int n, m, e, l;

void Pivot()
{
	b[l] /= a[l][e];
	for (int i = 1; i <= n; i++)
		if (i != e) a[l][i] /= a[l][e];
	a[l][e] = 1 / a[l][e];

	for (int i = 1; i <= m; i++)
		if (i != l && fabs(a[i][e]) > error) {
			b[i] -= a[i][e] * b[l];
			for (int j = 1; j <= n; j++)
				if (j != e) a[i][j] -= a[i][e] * a[l][j];
			a[i][e] = -a[i][e] * a[l][e];
		}

	v += c[e] * b[l];
	for (int i = 1; i <= n; i++)
		if (i != e) c[i] -= c[e] * a[l][i];
	c[e] = -c[e] * a[l][e];
}

double Simplex()
{
	while (true) {
		for (int &i = e = 1; i <= n; i++) 
			if (c[i] > error) break;
		if (e == n + 1) return v;

		double tmp = inf;
		for (int i = 1; i <= m; i++)
			if (a[i][e] > error && b[i] / a[i][e] < tmp)
				tmp = b[i] / a[i][e], l = i;
		Pivot();
	}
}

int main()
{
	n = read(), m = read();

	for (int i = 1; i <= n; i++) 
		scanf("%lf", &c[i]);

	for (int i = 1; i <= m; i++) {
		int size = read();
		for (int j = 1; j <= size; j++) {
			int u = read(), v = read();
			for (int k = u; k <= v; k++)
				a[i][k] += 1.0;
		}
		scanf("%lf", &b[i]);
	}
	
	double ans = Simplex();
	
	printf("%d\n", (int) (ans + 0.5));

	return 0;
}	

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值