桶排序——java

桶排序
时间复杂度:O(n)
空间复杂度:O(n+m)
【n为待排个数,m为桶的个数】
稳定
核心代码

import java.util.Arrays;

/**
 * 桶排序
 * @author jin
 *
 */
public class BucketSort {

    public static void main(String[] args) {
        int[] a={3,6,1,22,2,5,4,3,7,0,9,8,3,5};
        sort(a);
        System.out.println(Arrays.toString(a));

    }

    public static void sort(int[] a) {
        //求得原数组的最大值
        int max = a[0];
        for (int i = 0; i < a.length; i++) {
            if (max <= a[i]) {
                max = a[i];
            }
        }

        if(a==null||max<1){
            return;
        }

        /*
         * 数组的索引是从0开始的
         * 且bucket中的数值全为0
         */
        int[] bucket = new int[max+1];

        /*
         * 放入桶中,索引为数字的值
         * 如果有相同的值,则该索引对应的值+1
         */
        for (int i = 0; i < a.length; i++) {
            bucket[a[i]]++;
        }

        /*
         * 进行排序
         * 如果bucket中的元素不为0时
         * 把bucket的索引给原数组,完成排序
         */
        for (int i = 0, j = 0; i <bucket.length; i++) {
            while ((bucket[i]--) > 0) {
                a[j++] = i;
            }
        }
        bucket=null;
    }

}

桶排序是指把待排数值作为桶数组的索引,如果待排数字中有重复的,则对应的桶数值+1.
步骤:
(1)先找出原数组的最大值

int max=0;
for(int i=0;i<a.length;i++){
    if(max<=a[i])
    max=a[i];   
}

(2)新建桶数组,且元素数值为0

int[] bucket=new int[max+1];

【桶的索引是从0开始的,如果数组长度只是max的话,数组索引只能到max-1,那么max就囊括不到】
(3)遍历原数组,当原数组数值与桶数组的索引相同的时候,桶索引对应的数值+1

for(int i=0;i<a.length;i++){
    bucket[a[i]]++;
}

(4)对原数组进行排序,即把桶索引给原数组

for(int i=0,j=0;i<bucket.length;i++){
    while((bucket[i]--)>0){
        a[j++]=i;
    }
}

补充:
(1)关于i++和++i

int i=10;
System.out.println(i++);//10
System.out.println(++i);//12

i++是先把 i 给一个变量,然后再自增,
++i是先自增,然后再把 i 给一个变量。
(2)关于i–和–i

int i=10;
System.out.println(i--);//10
System.out.println(--i);//8

i–是先把 i 给一个变量,然后再自减,
–i是先自减,然后再把 i 给一个变量。

### 桶排序的时间复杂度 桶排序的核心在于将输入的数据分配到有限数量的桶中,每个桶内部再进行排序。理想情况下,如果数据均匀分布在各个桶中,则可以认为每个桶中的元素数目相对较少,从而使得后续的排序操作更加高效。 当假设n个元素被平均地划分到了m个桶当中,并且这些桶内的元素能够通过线性时间完成排序(例如使用插入排序),则整个过程的主要开销来自于遍历原始列表以填充各桶的过程O(n),加上对所有非空桶执行内部排序所需的时间总和\[O(m * (n/m)^2)\]。因此,在最优条件下,即当\( m ≈ n \)时,桶排序的整体时间复杂度接近于线性的O(n)[^1]。 然而需要注意的是,上述分析基于理想的分布状况;现实中由于数据可能并非完全随机分布,可能会导致某些特定桶内聚集过多元素而影响性能表现。此外,所选用的具体排序方法也会影响最终的时间消耗——更高效的排序算法会降低单个桶内排序的成本,进而改善整体效率[^3]。 ### 桶排序的空间复杂度 对于空间复杂度而言,主要取决于创建了多少个额外的存储单元来容纳不同的“桶”。通常来说,为了覆盖输入范围内的全部可能性,需要预先定义好适当大小的桶集合。这意呸着除了原本待排序数组外还需要占用大约O(k)级别的辅助内存空间用于构建k个独立容器[k代表预估的最大值减去最小值得差加一]。另外,考虑到最坏情形下所有的记录都落入同一个桶里,此时还需考虑该极端状态下所需的临时工作区,但这部分增长通常是常量级别或与输入规模成比例增加的小因子,故总体上仍可视为O(k+n)。 ```java // Java 实现简单版桶排序框架示意 public class BucketSortExample { public static void bucketSort(int[] array, int maxVal) { ArrayList<Integer>[] buckets = new ArrayList[maxVal + 1]; // 初始化桶 for (int i = 0; i < buckets.length; ++i){ buckets[i] = new ArrayList<>(); } // 将元素放入对应的桶中 for (int value : array){ buckets[value].add(value); } // 清空原数组准备接收已排序的结果 Arrays.fill(array, 0); // 合并所有桶的内容回原数组 int index = 0; for (ArrayList<Integer> bucket : buckets){ for (Integer num : bucket){ array[index++] = num; } } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值