11周 项目1

问题及描述:

     

/*  
烟台大学计算机学院  
  
文件名称:xianu.cpp  
  
作者:范宝磊
  
完成日期:2017年11月12日  
  
问题描述:定义图的邻接矩阵和邻接表存储结构,实现其基本运算,并完成测试。 
  
输入描述:无 
  
输出描述:输出邻接矩阵,邻接表。 
  
*/   
  
  
  
//graph.h:  
  
  
#include <stdio.h>  
#define MAXV 100  
#define INF 32767  
typedef int InfoType;  
typedef struct  
{  
  
    int no;  
  
  InfoType info;  
  
  
}VertexType;  
  
typedef struct  
{  
    int edges[MAXV][MAXV];  
  
    int n,e;  
  
    VertexType vexs[MAXV];  
}MGraph;//邻接矩阵  
  
typedef struct ANode  
{  
    int adjvex;  
  
    struct ANode *nextarc;  
  
     InfoType info;  
}ArcNode;  
  
typedef struct Vnode  
{  
    int data;  
    int count;  
  
    ArcNode *firstarc;  
  
}VNode;  
  
typedef VNode AdjList[MAXV];  
  
typedef struct  
{  
  
    AdjList adjlist;  
  
    int n,e;  
}ALGraph;  
  
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵  
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表  
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G  
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g  
void DispMat(MGraph g);//输出邻接矩阵g  
void DispAdj(ALGraph *G);//输出邻接表G  
  
  
//graph.cpp:  
  
  
#include <stdio.h>  
#include <malloc.h>  
#include "graph.h"  
  
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图  
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)  
//      n - 矩阵的阶数  
//      g - 要构造出来的邻接矩阵数据结构  
void ArrayToMat(int *Arr, int n, MGraph &g)  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    g.n=n;  
    for (i=0; i<g.n; i++)  
        for (j=0; j<g.n; j++)  
        {  
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]  
            if(g.edges[i][j]!=0 && g.edges[i][j]!=INF)  
                count++;  
        }  
    g.e=count;  
}  
  
void ArrayToList(int *Arr, int n, ALGraph *&G)  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    G->n=n;  
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素  
        for (j=n-1; j>=0; j--)  
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=Arr[i*n+j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
  
    G->e=count;  
}  
  
void MatToList(MGraph g, ALGraph *&G)  
//将邻接矩阵g转换成邻接表G  
{  
    int i,j;  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素  
        for (j=g.n-1; j>=0; j--)  
            if (g.edges[i][j]!=0)       //存在一条边  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=g.edges[i][j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
    G->n=g.n;  
    G->e=g.e;  
}  
  
void ListToMat(ALGraph *G,MGraph &g)  
//将邻接表G转换成邻接矩阵g  
{  
    int i,j;  
    ArcNode *p;  
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用  
    g.e=G->e;  
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵  
        for (j=0; j<g.n; j++)  
            g.edges[i][j]=0;  
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值  
    {  
        p=G->adjlist[i].firstarc;  
        while (p!=NULL)  
        {  
            g.edges[i][p->adjvex]=p->info;  
            p=p->nextarc;  
        }  
    }  
}  
  
void DispMat(MGraph g)  
//输出邻接矩阵g  
{  
    int i,j;  
    for (i=0; i<g.n; i++)  
    {  
        for (j=0; j<g.n; j++)  
            if (g.edges[i][j]==INF)  
                printf("%3s","∞");  
            else  
                printf("%3d",g.edges[i][j]);  
        printf("\n");  
    }  
}  
  
void DispAdj(ALGraph *G)  
//输出邻接表G  
{  
    int i;  
    ArcNode *p;  
    for (i=0; i<G->n; i++)  
    {  
        p=G->adjlist[i].firstarc;  
        printf("%3d: ",i);  
        while (p!=NULL)  
        {  
            printf("-->%d/%d ",p->adjvex,p->info);  
            p=p->nextarc;  
        }  
        printf("\n");  
    }  
}  
  
  
//main函数:  
  
#include <stdio.h>  
#include <malloc.h>  
#include "graph.h"  
  
int main()  
{  
    MGraph g1,g2;  
    ALGraph *G1,*G2;  
    int A[6][6]=  
    {  
        {0,5,0,7,0,0},  
        {0,0,4,0,0,0},  
        {8,0,0,0,0,9},  
        {0,0,5,0,0,6},  
        {0,0,0,5,0,0},  
        {3,0,0,0,1,0}  
    };  
  
    ArrayToMat(A[0], 6, g1);  //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配  
    printf(" 有向图g1的邻接矩阵:\n");  
    DispMat(g1);  
  
    ArrayToList(A[0], 6, G1);  
    printf(" 有向图G1的邻接表:\n");  
    DispAdj(G1);  
  
    MatToList(g1,G2);  
    printf(" 图g1的邻接矩阵转换成邻接表G2:\n");  
    DispAdj(G2);  
  
    ListToMat(G1,g2);  
    printf(" 图G1的邻接表转换成邻接邻阵g2:\n");  
    DispMat(g2);  
    printf("\n");  
    return 0;  
}  
运行结果:

     

   

学习心得:

通过定义图的邻接矩阵和邻接表存储结构,实现其基本运算,也学会了如何建立邻接矩阵,邻接表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值