1.配电网潮流常规模型
一个简单的支路潮流示意图如下图所示,
V
˙
i
\dot{V}_i
V˙i、
V
˙
i
\dot{V}_i
V˙i表示节点
i
i
i和节点
j
j
j的复电压,
z
i
j
z_{ij}
zij、
I
˙
i
j
\dot{I}_{ij}
I˙ij、
S
~
i
j
\tilde{S}_{ij}
S~ij分别表示支路
i
−
j
i-j
i−j上的复阻抗、复电流、复功率,
S
~
j
\tilde{S}_j
S~j表示节点
j
j
j注入的复功率。
则潮流方程如下所示:
V
˙
i
−
V
˙
j
=
z
i
j
I
˙
i
j
(1)
\dot{V}_i-\dot{V}_j=z_{ij}\dot{I}_{ij} \tag{1}
V˙i−V˙j=zijI˙ij(1)
S
~
i
j
=
V
˙
i
I
˙
i
j
∗
(2)
\tilde{S}_{ij}=\dot{V}_i\dot{I}_{ij}^* \tag{2}
S~ij=V˙iI˙ij∗(2)
S
~
j
=
∑
k
∈
δ
(
j
)
S
~
j
k
−
∑
i
∈
π
(
j
)
(
S
~
i
j
−
z
i
j
∣
I
˙
i
j
∣
2
)
(3)
\tilde{S}_{j}=\sum_{k\in\delta(j)}\tilde{S}_{jk}-\sum_{i\in\pi(j)}(\tilde{S}_{ij}-z_{ij}|\dot{I}_{ij}|^2) \tag{3}
S~j=k∈δ(j)∑S~jk−i∈π(j)∑(S~ij−zij∣I˙ij∣2)(3)
其中,
k
∈
δ
(
j
)
k\in\delta(j)
k∈δ(j)表示功率从节点
j
j
j流出的所有节点,
i
∈
π
(
j
)
i\in\pi(j)
i∈π(j)表示功率流向节点
j
j
j的所有节点。
2.去相角松弛
式(1)、(2)、(3)中变量都为复数,首先将其松弛为实数。上式(3)可直接改写为如下形式:
p
j
=
∑
k
∈
δ
(
j
)
p
j
k
−
∑
i
∈
π
(
j
)
(
p
i
j
−
r
i
j
I
i
j
2
)
(4)
p_j=\sum_{k\in\delta(j)}p_{jk}-\sum_{i\in\pi(j)}(p_{ij}-r_{ij}I_{ij}^2) \tag{4}
pj=k∈δ(j)∑pjk−i∈π(j)∑(pij−rijIij2)(4)
q
j
=
∑
k
∈
δ
(
j
)
q
j
k
−
∑
i
∈
π
(
j
)
(
q
i
j
−
x
i
j
I
i
j
2
)
(5)
q_j=\sum_{k\in\delta(j)}q_{jk}-\sum_{i\in\pi(j)}(q_{ij}-x_{ij}I_{ij}^2) \tag{5}
qj=k∈δ(j)∑qjk−i∈π(j)∑(qij−xijIij2)(5)
将常规模型中的式(2)代入式(1),得到下式
V
˙
i
−
V
˙
j
=
z
i
j
S
~
i
j
∗
V
˙
i
∗
⇒
V
˙
j
=
V
˙
i
−
z
i
j
S
~
i
j
∗
V
˙
i
∗
\dot{V}_i-\dot{V}_j=z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*} \Rightarrow \dot{V}_j=\dot{V}_i-z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*}
V˙i−V˙j=zijV˙i∗S~ij∗⇒V˙j=V˙i−zijV˙i∗S~ij∗
左右同乘以共轭,可得:
V
˙
j
V
˙
j
∗
=
(
V
˙
i
−
z
i
j
S
~
i
j
∗
V
˙
i
∗
)
(
V
˙
i
∗
−
z
i
j
∗
S
~
i
j
V
˙
i
)
=
V
˙
i
V
˙
i
∗
−
z
i
j
S
~
i
j
∗
−
z
i
j
∗
S
~
i
j
+
z
i
j
z
i
j
∗
S
~
i
j
S
~
i
j
∗
V
˙
i
V
˙
i
∗
\dot{V}_j\dot{V}_j^*=(\dot{V}_i-z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*})(\dot{V}_i^*-z_{ij}^*\frac{\tilde{S}_{ij}}{\dot{V}_i}) =\dot{V}_i\dot{V}_i^*-z_{ij}\tilde{S}_{ij}^*-z_{ij}^*\tilde{S}_{ij}+z_{ij}z_{ij}^*\frac{\tilde{S}_{ij}\tilde{S}_{ij}^*}{\dot{V}_i\dot{V}_i^*}
V˙jV˙j∗=(V˙i−zijV˙i∗S~ij∗)(V˙i∗−zij∗V˙iS~ij)=V˙iV˙i∗−zijS~ij∗−zij∗S~ij+zijzij∗V˙iV˙i∗S~ijS~ij∗
将上式的实部虚部写开可得(其中
j
\textbf{j}
j为虚数单位,
j
2
=
−
1
\textbf{j}^2=-1
j2=−1)
⇒
V
j
2
=
V
i
2
−
[
(
r
i
j
+
j
x
i
j
)
(
p
i
j
−
j
q
i
j
)
+
(
r
i
j
−
j
x
i
j
)
(
p
i
j
+
j
q
i
j
)
]
+
∣
z
i
j
∣
2
I
i
j
2
=
V
i
2
−
[
(
r
i
j
p
i
j
+
x
i
j
q
i
j
−
j
r
i
j
q
i
j
+
j
x
i
j
p
i
j
)
+
(
r
i
j
p
i
j
+
x
i
j
q
i
j
+
j
r
i
j
q
i
j
−
j
x
i
j
p
i
j
)
]
+
(
r
i
j
2
+
x
i
j
2
)
I
i
j
2
\Rightarrow V_j^2=V_i^2-[(r_{ij}+\textbf{j}x_{ij})(p_{ij}-\textbf{j}q_{ij})+(r_{ij}-\textbf{j}x_{ij})(p_{ij}+\textbf{j}q_{ij})]+|z_{ij}|^2I_{ij}^2 \\ =V_i^2-[(r_{ij}p_{ij}+x_{ij}q_{ij}-\textbf{j}r_{ij}q_{ij}+\textbf{j}x_{ij}p_{ij})+(r_{ij}p_{ij}+x_{ij}q_{ij}+\textbf{j}r_{ij}q_{ij}-\textbf{j}x_{ij}p_{ij})]+(r_{ij}^2+x_{ij}^2)I_{ij}^2
⇒Vj2=Vi2−[(rij+jxij)(pij−jqij)+(rij−jxij)(pij+jqij)]+∣zij∣2Iij2=Vi2−[(rijpij+xijqij−jrijqij+jxijpij)+(rijpij+xijqij+jrijqij−jxijpij)]+(rij2+xij2)Iij2
整理后可得:
V
j
2
=
V
i
2
−
2
(
r
i
j
p
i
j
+
x
i
j
q
i
j
)
+
(
r
i
j
2
+
x
i
j
2
)
I
i
j
2
(6)
V_j^2=V_i^2-2(r_{ij}p_{ij}+x_{ij}q_{ij})+(r_{ij}^2+x_{ij}^2)I_{ij}^2 \tag{6}
Vj2=Vi2−2(rijpij+xijqij)+(rij2+xij2)Iij2(6)
再对式(2)左右同乘以共轭
S
~
i
j
S
~
i
j
∗
=
V
˙
i
V
˙
i
∗
I
˙
i
j
I
˙
i
j
∗
\tilde{S}_{ij}\tilde{S}_{ij}^*=\dot{V}_i\dot{V}_i^*\dot{I}_{ij}\dot{I}_{ij}^*
S~ijS~ij∗=V˙iV˙i∗I˙ijI˙ij∗
整理可得:
V
i
2
I
i
j
2
=
p
i
j
2
+
q
i
j
2
(7)
V_i^2I_{ij}^2=p_{ij}^2+q_{ij}^2 \tag{7}
Vi2Iij2=pij2+qij2(7)
3.二阶锥松弛
式(7)的最高次数为四次,首先降次。设
l
i
j
=
I
i
j
2
l_{ij}=I_{ij}^2
lij=Iij2,
v
i
=
V
i
2
v_{i}=V_{i}^2
vi=Vi2,则式(7)可改写为:
l
i
j
v
i
=
p
i
j
2
+
q
i
j
2
l_{ij}v_i= p_{ij}^2+q_{ij}^2
lijvi=pij2+qij2
此时上式为二次等式约束,不便处理,进行二阶锥转化。
将等于号松弛为大于等于号,原最优潮流问题等价(证明详见参考文献[1]),可得下式:
l
i
j
v
i
≥
p
i
j
2
+
q
i
j
2
l_{ij}v_i\ge p_{ij}^2+q_{ij}^2
lijvi≥pij2+qij2
左右两边乘4,加
(
l
i
j
−
v
i
)
2
(l_{ij}-v_i)^2
(lij−vi)2,可得
4
l
i
j
v
i
+
l
i
j
2
+
v
i
2
−
2
l
i
j
v
i
≥
4
p
i
j
2
+
4
q
i
j
2
+
(
l
i
j
−
v
i
)
2
⇒
(
l
i
j
+
v
i
)
2
≥
(
2
p
i
j
)
2
+
(
2
q
i
j
)
2
+
(
l
i
j
−
v
i
)
2
4l_{ij}v_i+l_{ij}^2+v_i^2-2l_{ij}v_i\ge 4p_{ij}^2+4q_{ij}^2+(l_{ij}-v_i)^2 \\ \Rightarrow(l_{ij}+v_i)^2\ge (2p_{ij})^2+(2q_{ij})^2+(l_{ij}-v_i)^2
4lijvi+lij2+vi2−2lijvi≥4pij2+4qij2+(lij−vi)2⇒(lij+vi)2≥(2pij)2+(2qij)2+(lij−vi)2
写成范数形式,得到下式:
l
i
j
+
v
i
≥
∥
2
p
i
j
2
p
i
j
l
i
j
−
v
i
∥
2
(8)
l_{ij}+v_i \ge \left \|\begin{matrix} 2p_{ij} \\ 2p_{ij} \\ l_{ij}-v_i \end{matrix}\right \| _2\tag{8}
lij+vi≥
2pij2pijlij−vi
2(8)
4.二阶锥形式的最优潮流问题(SOCP-OPF)
综上,式(4)、(5)、(6)、(8)构成了二阶锥形式的潮流约束条件。则SOCP-OPF问题的形式如下所示:
min
f
=
P
l
o
s
s
=
∑
(
i
,
j
)
∈
Ω
N
e
t
w
o
r
k
l
i
j
r
i
j
s.t.
p
j
=
∑
k
∈
δ
(
j
)
p
j
k
−
∑
i
∈
π
(
j
)
(
p
i
j
−
r
i
j
l
i
j
)
q
j
=
∑
k
∈
δ
(
j
)
q
j
k
−
∑
i
∈
π
(
j
)
(
q
i
j
−
x
i
j
l
i
j
)
v
j
=
v
i
−
2
(
r
i
j
p
i
j
+
x
i
j
q
i
j
)
+
(
r
i
j
2
+
x
i
j
2
)
l
i
j
∥
2
p
i
j
2
p
i
j
l
i
j
−
v
i
∥
2
≤
l
i
j
+
v
i
I
‾
i
j
2
≤
l
i
j
≤
I
‾
i
j
2
V
‾
i
2
≤
v
i
≤
V
‾
i
2
\min f=P_{loss}=\sum_{(i,j)\in\Omega_{Network}}l_{ij}r_{ij}\\ \text{s.t.} \quad p_j=\sum_{k\in\delta(j)}p_{jk}-\sum_{i\in\pi(j)}(p_{ij}-r_{ij}l_{ij}) \\ q_j=\sum_{k\in\delta(j)}q_{jk}-\sum_{i\in\pi(j)}(q_{ij}-x_{ij}l_{ij}) \\ v_j=v_i-2(r_{ij}p_{ij}+x_{ij}q_{ij})+(r_{ij}^2+x_{ij}^2)l_{ij} \\ \left \|\begin{matrix} 2p_{ij} \\ 2p_{ij} \\ l_{ij}-v_i \end{matrix}\right \| _2\le l_{ij}+v_i \\ \underline{I}_{ij}^2\le l_{ij}\le \overline{I}_{ij}^2 \\ \underline{V}_{i}^2\le v_{i}\le \overline{V}_{i}^2
minf=Ploss=(i,j)∈ΩNetwork∑lijrijs.t.pj=k∈δ(j)∑pjk−i∈π(j)∑(pij−rijlij)qj=k∈δ(j)∑qjk−i∈π(j)∑(qij−xijlij)vj=vi−2(rijpij+xijqij)+(rij2+xij2)lij
2pij2pijlij−vi
2≤lij+viIij2≤lij≤Iij2Vi2≤vi≤Vi2
参考文献
[1] M. Farivar和S. H. Low, 《Branch Flow Model: Relaxations and Convexification—Part I》, IEEE Trans. Power Syst., 卷 28, 期 3, 页 2554–2564, 8月 2013, doi: 10.1109/TPWRS.2013.2255317.
[2] 主动配电网SOCP_OPF学习笔记(2)推导SOCP_OPF模型