1.配电网潮流常规模型
一个简单的支路潮流示意图如下图所示, V ˙ i \dot{V}_i V˙i、 V ˙ i \dot{V}_i V˙i表示节点 i i i和节点 j j j的复电压, z i j z_{ij} zij、 I ˙ i j \dot{I}_{ij} I˙ij、 S ~ i j \tilde{S}_{ij} S~ij分别表示支路 i − j i-j i−j上的复阻抗、复电流、复功率, S ~ j \tilde{S}_j S~j表示节点 j j j注入的复功率。
则潮流方程如下所示:
V ˙ i − V ˙ j = z i j I ˙ i j (1) \dot{V}_i-\dot{V}_j=z_{ij}\dot{I}_{ij} \tag{1} V˙i−V˙j=zijI˙ij(1)
S ~ i j = V ˙ i I ˙ i j ∗ (2) \tilde{S}_{ij}=\dot{V}_i\dot{I}_{ij}^* \tag{2} S~ij=V˙iI˙ij∗(2)
S ~ j = ∑ k ∈ δ ( j ) S ~ j k − ∑ i ∈ π ( j ) ( S ~ i j − z i j ∣ I ˙ i j ∣ 2 ) (3) \tilde{S}_{j}=\sum_{k\in\delta(j)}\tilde{S}_{jk}-\sum_{i\in\pi(j)}(\tilde{S}_{ij}-z_{ij}|\dot{I}_{ij}|^2) \tag{3} S~j=k∈δ(j)∑S~jk−i∈π(j)∑(S~ij−zij∣I˙ij∣2)(3)
其中, k ∈ δ ( j ) k\in\delta(j) k∈δ(j)表示功率从节点 j j j流出的所有节点, i ∈ π ( j ) i\in\pi(j) i∈π(j)表示功率流向节点 j j j的所有节点。
2.去相角松弛
式(1)、(2)、(3)中变量都为复数,首先将其松弛为实数。上式(3)可直接改写为如下形式:
p j = ∑ k ∈ δ ( j ) p j k − ∑ i ∈ π ( j ) ( p i j − r i j I i j 2 ) (4) p_j=\sum_{k\in\delta(j)}p_{jk}-\sum_{i\in\pi(j)}(p_{ij}-r_{ij}I_{ij}^2) \tag{4} pj=k∈δ(j)∑pjk−i∈π(j)∑(pij−rijIij2)(4)
q j = ∑ k ∈ δ ( j ) q j k − ∑ i ∈ π ( j ) ( q i j − x i j I i j 2 ) (5) q_j=\sum_{k\in\delta(j)}q_{jk}-\sum_{i\in\pi(j)}(q_{ij}-x_{ij}I_{ij}^2) \tag{5} qj=k∈δ(j)∑qjk−i∈π(j)∑(qij−xijI