二阶锥形式的配电网最优潮流问题(SOCP-OPF)推导过程

1.配电网潮流常规模型

一个简单的支路潮流示意图如下图所示, V ˙ i \dot{V}_i V˙i V ˙ i \dot{V}_i V˙i表示节点 i i i和节点 j j j的复电压, z i j z_{ij} zij I ˙ i j \dot{I}_{ij} I˙ij S ~ i j \tilde{S}_{ij} S~ij分别表示支路 i − j i-j ij上的复阻抗、复电流、复功率, S ~ j \tilde{S}_j S~j表示节点 j j j注入的复功率。
在这里插入图片描述
则潮流方程如下所示:
V ˙ i − V ˙ j = z i j I ˙ i j (1) \dot{V}_i-\dot{V}_j=z_{ij}\dot{I}_{ij} \tag{1} V˙iV˙j=zijI˙ij(1)
S ~ i j = V ˙ i I ˙ i j ∗ (2) \tilde{S}_{ij}=\dot{V}_i\dot{I}_{ij}^* \tag{2} S~ij=V˙iI˙ij(2)
S ~ j = ∑ k ∈ δ ( j ) S ~ j k − ∑ i ∈ π ( j ) ( S ~ i j − z i j ∣ I ˙ i j ∣ 2 ) (3) \tilde{S}_{j}=\sum_{k\in\delta(j)}\tilde{S}_{jk}-\sum_{i\in\pi(j)}(\tilde{S}_{ij}-z_{ij}|\dot{I}_{ij}|^2) \tag{3} S~j=kδ(j)S~jkiπ(j)(S~ijzijI˙ij2)(3)
其中, k ∈ δ ( j ) k\in\delta(j) kδ(j)表示功率从节点 j j j流出的所有节点, i ∈ π ( j ) i\in\pi(j) iπ(j)表示功率流向节点 j j j的所有节点。

2.去相角松弛

式(1)、(2)、(3)中变量都为复数,首先将其松弛为实数。上式(3)可直接改写为如下形式:
p j = ∑ k ∈ δ ( j ) p j k − ∑ i ∈ π ( j ) ( p i j − r i j I i j 2 ) (4) p_j=\sum_{k\in\delta(j)}p_{jk}-\sum_{i\in\pi(j)}(p_{ij}-r_{ij}I_{ij}^2) \tag{4} pj=kδ(j)pjkiπ(j)(pijrijIij2)(4)
q j = ∑ k ∈ δ ( j ) q j k − ∑ i ∈ π ( j ) ( q i j − x i j I i j 2 ) (5) q_j=\sum_{k\in\delta(j)}q_{jk}-\sum_{i\in\pi(j)}(q_{ij}-x_{ij}I_{ij}^2) \tag{5} qj=kδ(j)qjkiπ(j)(qijxijIij2)(5)
将常规模型中的式(2)代入式(1),得到下式
V ˙ i − V ˙ j = z i j S ~ i j ∗ V ˙ i ∗ ⇒ V ˙ j = V ˙ i − z i j S ~ i j ∗ V ˙ i ∗ \dot{V}_i-\dot{V}_j=z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*} \Rightarrow \dot{V}_j=\dot{V}_i-z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*} V˙iV˙j=zijV˙iS~ijV˙j=V˙izijV˙iS~ij
左右同乘以共轭,可得:
V ˙ j V ˙ j ∗ = ( V ˙ i − z i j S ~ i j ∗ V ˙ i ∗ ) ( V ˙ i ∗ − z i j ∗ S ~ i j V ˙ i ) = V ˙ i V ˙ i ∗ − z i j S ~ i j ∗ − z i j ∗ S ~ i j + z i j z i j ∗ S ~ i j S ~ i j ∗ V ˙ i V ˙ i ∗ \dot{V}_j\dot{V}_j^*=(\dot{V}_i-z_{ij}\frac{\tilde{S}_{ij}^*}{\dot{V}_i^*})(\dot{V}_i^*-z_{ij}^*\frac{\tilde{S}_{ij}}{\dot{V}_i}) =\dot{V}_i\dot{V}_i^*-z_{ij}\tilde{S}_{ij}^*-z_{ij}^*\tilde{S}_{ij}+z_{ij}z_{ij}^*\frac{\tilde{S}_{ij}\tilde{S}_{ij}^*}{\dot{V}_i\dot{V}_i^*} V˙jV˙j=(V˙izijV˙iS~ij)(V˙izijV˙iS~ij)=V˙iV˙izijS~ijzijS~ij+zijzijV˙iV˙iS~ijS~ij
将上式的实部虚部写开可得(其中 j \textbf{j} j为虚数单位, j 2 = − 1 \textbf{j}^2=-1 j2=1
⇒ V j 2 = V i 2 − [ ( r i j + j x i j ) ( p i j − j q i j ) + ( r i j − j x i j ) ( p i j + j q i j ) ] + ∣ z i j ∣ 2 I i j 2 = V i 2 − [ ( r i j p i j + x i j q i j − j r i j q i j + j x i j p i j ) + ( r i j p i j + x i j q i j + j r i j q i j − j x i j p i j ) ] + ( r i j 2 + x i j 2 ) I i j 2 \Rightarrow V_j^2=V_i^2-[(r_{ij}+\textbf{j}x_{ij})(p_{ij}-\textbf{j}q_{ij})+(r_{ij}-\textbf{j}x_{ij})(p_{ij}+\textbf{j}q_{ij})]+|z_{ij}|^2I_{ij}^2 \\ =V_i^2-[(r_{ij}p_{ij}+x_{ij}q_{ij}-\textbf{j}r_{ij}q_{ij}+\textbf{j}x_{ij}p_{ij})+(r_{ij}p_{ij}+x_{ij}q_{ij}+\textbf{j}r_{ij}q_{ij}-\textbf{j}x_{ij}p_{ij})]+(r_{ij}^2+x_{ij}^2)I_{ij}^2 Vj2=Vi2[(rij+jxij)(pijjqij)+(rijjxij)(pij+jqij)]+zij2Iij2=Vi2[(rijpij+xijqijjrijqij+jxijpij)+(rijpij+xijqij+jrijqijjxijpij)]+(rij2+xij2)Iij2
整理后可得:
V j 2 = V i 2 − 2 ( r i j p i j + x i j q i j ) + ( r i j 2 + x i j 2 ) I i j 2 (6) V_j^2=V_i^2-2(r_{ij}p_{ij}+x_{ij}q_{ij})+(r_{ij}^2+x_{ij}^2)I_{ij}^2 \tag{6} Vj2=Vi22(rijpij+xijqij)+(rij2+xij2)Iij2(6)
再对式(2)左右同乘以共轭
S ~ i j S ~ i j ∗ = V ˙ i V ˙ i ∗ I ˙ i j I ˙ i j ∗ \tilde{S}_{ij}\tilde{S}_{ij}^*=\dot{V}_i\dot{V}_i^*\dot{I}_{ij}\dot{I}_{ij}^* S~ijS~ij=V˙iV˙iI˙ijI˙ij
整理可得:
V i 2 I i j 2 = p i j 2 + q i j 2 (7) V_i^2I_{ij}^2=p_{ij}^2+q_{ij}^2 \tag{7} Vi2Iij2=pij2+qij2(7)

3.二阶锥松弛

式(7)的最高次数为四次,首先降次。设 l i j = I i j 2 l_{ij}=I_{ij}^2 lij=Iij2 v i = V i 2 v_{i}=V_{i}^2 vi=Vi2,则式(7)可改写为:
l i j v i = p i j 2 + q i j 2 l_{ij}v_i= p_{ij}^2+q_{ij}^2 lijvi=pij2+qij2
此时上式为二次等式约束,不便处理,进行二阶锥转化。
将等于号松弛为大于等于号,原最优潮流问题等价(证明详见参考文献[1]),可得下式:
l i j v i ≥ p i j 2 + q i j 2 l_{ij}v_i\ge p_{ij}^2+q_{ij}^2 lijvipij2+qij2
左右两边乘4,加 ( l i j − v i ) 2 (l_{ij}-v_i)^2 (lijvi)2,可得
4 l i j v i + l i j 2 + v i 2 − 2 l i j v i ≥ 4 p i j 2 + 4 q i j 2 + ( l i j − v i ) 2 ⇒ ( l i j + v i ) 2 ≥ ( 2 p i j ) 2 + ( 2 q i j ) 2 + ( l i j − v i ) 2 4l_{ij}v_i+l_{ij}^2+v_i^2-2l_{ij}v_i\ge 4p_{ij}^2+4q_{ij}^2+(l_{ij}-v_i)^2 \\ \Rightarrow(l_{ij}+v_i)^2\ge (2p_{ij})^2+(2q_{ij})^2+(l_{ij}-v_i)^2 4lijvi+lij2+vi22lijvi4pij2+4qij2+(lijvi)2(lij+vi)2(2pij)2+(2qij)2+(lijvi)2
写成范数形式,得到下式:
l i j + v i ≥ ∥ 2 p i j 2 p i j l i j − v i ∥ 2 (8) l_{ij}+v_i \ge \left \|\begin{matrix} 2p_{ij} \\ 2p_{ij} \\ l_{ij}-v_i \end{matrix}\right \| _2\tag{8} lij+vi 2pij2pijlijvi 2(8)

4.二阶锥形式的最优潮流问题(SOCP-OPF)

综上,式(4)、(5)、(6)、(8)构成了二阶锥形式的潮流约束条件。则SOCP-OPF问题的形式如下所示:
min ⁡ f = P l o s s = ∑ ( i , j ) ∈ Ω N e t w o r k l i j r i j s.t. p j = ∑ k ∈ δ ( j ) p j k − ∑ i ∈ π ( j ) ( p i j − r i j l i j ) q j = ∑ k ∈ δ ( j ) q j k − ∑ i ∈ π ( j ) ( q i j − x i j l i j ) v j = v i − 2 ( r i j p i j + x i j q i j ) + ( r i j 2 + x i j 2 ) l i j ∥ 2 p i j 2 p i j l i j − v i ∥ 2 ≤ l i j + v i I ‾ i j 2 ≤ l i j ≤ I ‾ i j 2 V ‾ i 2 ≤ v i ≤ V ‾ i 2 \min f=P_{loss}=\sum_{(i,j)\in\Omega_{Network}}l_{ij}r_{ij}\\ \text{s.t.} \quad p_j=\sum_{k\in\delta(j)}p_{jk}-\sum_{i\in\pi(j)}(p_{ij}-r_{ij}l_{ij}) \\ q_j=\sum_{k\in\delta(j)}q_{jk}-\sum_{i\in\pi(j)}(q_{ij}-x_{ij}l_{ij}) \\ v_j=v_i-2(r_{ij}p_{ij}+x_{ij}q_{ij})+(r_{ij}^2+x_{ij}^2)l_{ij} \\ \left \|\begin{matrix} 2p_{ij} \\ 2p_{ij} \\ l_{ij}-v_i \end{matrix}\right \| _2\le l_{ij}+v_i \\ \underline{I}_{ij}^2\le l_{ij}\le \overline{I}_{ij}^2 \\ \underline{V}_{i}^2\le v_{i}\le \overline{V}_{i}^2 minf=Ploss=(i,j)ΩNetworklijrijs.t.pj=kδ(j)pjkiπ(j)(pijrijlij)qj=kδ(j)qjkiπ(j)(qijxijlij)vj=vi2(rijpij+xijqij)+(rij2+xij2)lij 2pij2pijlijvi 2lij+viIij2lijIij2Vi2viVi2

参考文献

[1] M. Farivar和S. H. Low, 《Branch Flow Model: Relaxations and Convexification—Part I》, IEEE Trans. Power Syst., 卷 28, 期 3, 页 2554–2564, 8月 2013, doi: 10.1109/TPWRS.2013.2255317.
[2] 主动配电网SOCP_OPF学习笔记(2)推导SOCP_OPF模型

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值