驾考 | 2024最新科目一知识点口诀:法规、场地、道路

目录

扣分

罚款

判刑

通行原则

特殊路况和天气

灯光仪表和医疗常识

信号标识

操纵装置

交警手势

标线

错题本


扣分

喝酒了就是12分

校车在普通道路上驾驶,找10%一下一分,10%以上九分

货车扣分少,最多6分

罚款

弄虚作假

审验

代计分

酒驾罚1000-2000

判刑

没有逃逸就是三年一下

通行原则

右让左 弯让直 右方先行

只能左侧超、不能超特殊车

特殊路况和天气

原则:让车撞到路肩

灯光仪表和医疗常识

信号标识

事故易发、没有追尾标志

禁止通行:任何车都不能进

禁止驶入:车不能进入

操纵装置

左灯右水

冷却液

交警手势

转弯:一只手手心朝前、一只手向下

单左手下压待转、单右手下压减速慢行

标线

白色同向 黄色反向 虚线可跨

错题本

有效期满九十日 信息变更三十日

驾驶证审验是看人,机动车审验是看车

作弊发现一年 被吊销三年

组织作弊轻三吊一处罚金

驾驶证的年龄区间是20、60

满分学习现场不少于两天,学法减分最多6分

避让小车扣三分、标线行驶扣一分、插队扣三分

扣满12分 参加一星期科目一

装让车身和案件扣200

超员分期做 3669 12

超速50%扣12分

准驾车型不符扣9分

普通路:倒车1逆行3占道6

高速路:慢速3占道6停车9逆行12

假一吊二撤三(骗三)罚终身

白色同向 黄色反向

一个坡是高突 一个坑是低洼 两个凸是不平

三角形减速让行 八边形停车让行

一急二反三连续

如果申请有上限,上限只有60

假1吊2撤3醉5逃终身

加装防撞装置不需要登记变更

动物目标检测数据集 、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值